File size: 13,634 Bytes
bc658ea
 
 
9516ab6
 
 
bc658ea
9516ab6
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9516ab6
 
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9516ab6
bc658ea
9516ab6
bc658ea
 
 
 
 
b7e2cc1
 
 
bc658ea
 
 
 
 
 
16def94
47887bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc658ea
47887bb
 
bc658ea
47887bb
 
 
bc658ea
47887bb
 
bc658ea
47887bb
 
 
 
bc658ea
47887bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc658ea
47887bb
 
 
16def94
bc658ea
 
 
b7e2cc1
 
 
bc658ea
 
 
 
 
 
b7e2cc1
47887bb
bc658ea
47887bb
 
 
 
 
 
bc658ea
47887bb
 
bc658ea
47887bb
 
 
 
 
 
 
 
bc658ea
47887bb
 
bc658ea
47887bb
 
 
9516ab6
47887bb
 
bc658ea
47887bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16def94
 
bc658ea
16def94
b7e2cc1
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47887bb
bc658ea
 
 
16def94
 
 
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47887bb
bc658ea
 
 
 
 
 
63d8eb0
bc658ea
63d8eb0
 
826f2a4
 
 
 
63d8eb0
 
826f2a4
 
 
 
63d8eb0
bc658ea
826f2a4
 
 
 
bc658ea
16def94
bc658ea
 
 
 
 
 
 
 
 
 
 
 
16def94
 
 
bc658ea
 
 
 
 
 
 
 
 
 
9516ab6
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9516ab6
bc658ea
 
 
9516ab6
bc658ea
 
 
 
 
9516ab6
bc658ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47887bb
bc658ea
 
 
 
 
 
 
16def94
bc658ea
16def94
bc658ea
47887bb
16def94
47887bb
bc658ea
 
16def94
bc658ea
9516ab6
bc658ea
16def94
9516ab6
16def94
 
9516ab6
071c251
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import copy
import os  # noqa

import gradio as gr
import numpy as np
import torch
from PIL import ImageDraw
from torchvision.transforms import ToTensor

from utils.tools import format_results, point_prompt
from utils.tools_gradio import fast_process

# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Thanks for AN-619.

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

gpu_checkpoint_path = "efficientsam_s_gpu.jit"
cpu_checkpoint_path = "efficientsam_s_cpu.jit"

if torch.cuda.is_available():
    model = torch.jit.load(gpu_checkpoint_path)
else:
    model = torch.jit.load(cpu_checkpoint_path)
model.eval()

# Description
title = "<center><strong><font size='8'>Efficient Segment Anything(EfficientSAM)<font></strong></center>"

description_e = """This is a demo of [Efficient Segment Anything(EfficientSAM) Model](https://github.com/yformer/EfficientSAM).
              """

description_p = """# Interactive Instance Segmentation
                - Point-prompt instruction
                <ol>
                <li> Click on the left image (point input), visualizing the point on the right image </li>
                <li> Click the button of Segment with Point Prompt </li>
                </ol>
                - Box-prompt instruction
                <ol>
                <li> Click on the left image (one point input), visualizing the point on the right image </li>
                <li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
                <li> Click the button of Segment with Box Prompt </li>
                </ol>
                - Github [link](https://github.com/yformer/EfficientSAM)
              """

# examples
examples = [
    ["examples/image1.jpg"],
    ["examples/image2.jpg"],
    ["examples/image3.jpg"],
    ["examples/image4.jpg"],
    ["examples/image5.jpg"],
    ["examples/image6.jpg"],
    ["examples/image7.jpg"],
    ["examples/image8.jpg"],
    ["examples/image9.jpg"],
    ["examples/image10.jpg"],
    ["examples/image11.jpg"],
    ["examples/image12.jpg"],
    ["examples/image13.jpg"],
    ["examples/image14.jpg"],
]

default_example = examples[0]

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"


def segment_with_boxs(
    image,
    seg_image,
    global_points,
    global_point_label,
    input_size=1024,
    better_quality=False,
    withContours=True,
    use_retina=True,
    mask_random_color=True,
):

    if len(global_points) < 2:
        return seg_image
    print("Original Image : ", image.size)

    input_size = int(input_size)
    w, h = image.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    image = image.resize((new_w, new_h))

    print("Scaled Image : ", image.size)
    print("Scale : ", scale)

    scaled_points = np.array(
        [[int(x * scale) for x in point] for point in global_points]
    )
    scaled_points = scaled_points[:2]
    scaled_point_label = np.array(global_point_label)[:2]

    print(scaled_points, scaled_points is not None)
    print(scaled_point_label, scaled_point_label is not None)

    if scaled_points.size == 0 and scaled_point_label.size == 0:
        print("No points selected")
        return image

    nd_image = np.array(image)
    img_tensor = ToTensor()(nd_image)

    print(img_tensor.shape)
    pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
    pts_sampled = pts_sampled[:, :, :2, :]
    pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])

    predicted_logits, predicted_iou = model(
        img_tensor[None, ...].to(device),
        pts_sampled.to(device),
        pts_labels.to(device),
    )
    predicted_logits = predicted_logits.cpu()
    all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
    predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()


    max_predicted_iou = -1
    selected_mask_using_predicted_iou = None
    selected_predicted_iou = None

    for m in range(all_masks.shape[0]):
        curr_predicted_iou = predicted_iou[m]
        if (
            curr_predicted_iou > max_predicted_iou
            or selected_mask_using_predicted_iou is None
        ):
            max_predicted_iou = curr_predicted_iou
            selected_mask_using_predicted_iou = all_masks[m:m+1]
            selected_predicted_iou = predicted_iou[m:m+1]

    results = format_results(selected_mask_using_predicted_iou, selected_predicted_iou, predicted_logits, 0)

    annotations = results[0]["segmentation"]
    annotations = np.array([annotations])
    print(scaled_points.shape)
    fig = fast_process(
        annotations=annotations,
        image=image,
        device=device,
        scale=(1024 // input_size),
        better_quality=better_quality,
        mask_random_color=mask_random_color,
        use_retina=use_retina,
        bbox = scaled_points.reshape([4]),
        withContours=withContours,
    )

    global_points = []
    global_point_label = []
    # return fig, None
    return fig, global_points, global_point_label


def segment_with_points(
    image,
    global_points,
    global_point_label,
    input_size=1024,
    better_quality=False,
    withContours=True,
    use_retina=True,
    mask_random_color=True,
):
    print("Starting getting points")
    print("Original Image : ", image.size)

    input_size = int(input_size)
    w, h = image.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    image = image.resize((new_w, new_h))

    print("Scaled Image : ", image.size)
    print("Scale : ", scale)

    if global_points is None:
        return image
    if len(global_points) < 1:
        return image
    scaled_points = np.array(
        [[int(x * scale) for x in point] for point in global_points]
    )
    scaled_point_label = np.array(global_point_label)

    print(scaled_points, scaled_points is not None)
    print(scaled_point_label, scaled_point_label is not None)

    if scaled_points.size == 0 and scaled_point_label.size == 0:
        print("No points selected")
        return image

    nd_image = np.array(image)
    img_tensor = ToTensor()(nd_image)

    print(img_tensor.shape)
    pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
    pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])

    predicted_logits, predicted_iou = model(
        img_tensor[None, ...].to(device),
        pts_sampled.to(device),
        pts_labels.to(device),
    )
    predicted_logits = predicted_logits.cpu()
    all_masks = torch.ge(torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5).numpy()
    predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()

    results = format_results(all_masks, predicted_iou, predicted_logits, 0)

    annotations, _ = point_prompt(
        results, scaled_points, scaled_point_label, new_h, new_w
    )
    annotations = np.array([annotations])

    fig = fast_process(
        annotations=annotations,
        image=image,
        device=device,
        scale=(1024 // input_size),
        better_quality=better_quality,
        mask_random_color=mask_random_color,
        points = scaled_points,
        bbox=None,
        use_retina=use_retina,
        withContours=withContours,
    )

    global_points = []
    global_point_label = []
    # return fig, None
    return fig, global_points, global_point_label


def get_points_with_draw(image, cond_image, global_points, global_point_label, evt: gr.SelectData):
    print("Starting functioning")
    if len(global_points) == 0:
        image = copy.deepcopy(cond_image)
    x, y = evt.index[0], evt.index[1]
    label = "Add Mask"
    point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
        255,
        0,
        255,
    )
    global_points.append([x, y])
    global_point_label.append(1 if label == "Add Mask" else 0)

    print(x, y, label == "Add Mask")

    if image is not None:
        draw = ImageDraw.Draw(image)

        draw.ellipse(
            [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
            fill=point_color,
        )

    return image, global_points, global_point_label

def get_points_with_draw_(image, cond_image, global_points, global_point_label, evt: gr.SelectData):

    if len(global_points) == 0:
        image = copy.deepcopy(cond_image)
    if len(global_points) > 2:
        return image
    x, y = evt.index[0], evt.index[1]
    label = "Add Mask"
    point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
        255,
        0,
        255,
    )
    global_points.append([x, y])
    global_point_label.append(1 if label == "Add Mask" else 0)

    print(x, y, label == "Add Mask")

    if image is not None:
        draw = ImageDraw.Draw(image)

        draw.ellipse(
            [(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)],
            fill=point_color,
        )

    if len(global_points) == 2:
        x1, y1 = global_points[0]
        x2, y2 = global_points[1]
        if x1 < x2 and y1 < y2:
            draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
        elif x1 < x2 and y1 >= y2:
            draw.rectangle([x1, y2, x2, y1], outline="red", width=5)
            global_points[0][0] = x1
            global_points[0][1] = y2
            global_points[1][0] = x2
            global_points[1][1] = y1
        elif x1 >= x2 and y1 < y2:
            draw.rectangle([x2, y1, x1, y2], outline="red", width=5)
            global_points[0][0] = x2
            global_points[0][1] = y1
            global_points[1][0] = x1
            global_points[1][1] = y2
        elif x1 >= x2 and y1 >= y2:
            draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
            global_points[0][0] = x2
            global_points[0][1] = y2
            global_points[1][0] = x1
            global_points[1][1] = y1

    return image, global_points, global_point_label


cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")

segm_img_p = gr.Image(
    label="Segmented Image with Point-Prompt", interactive=False, type="pil"
)
segm_img_b = gr.Image(
    label="Segmented Image with Box-Prompt", interactive=False, type="pil"
)

global_points = gr.State([])
global_point_label = gr.State([])

input_size_slider = gr.components.Slider(
    minimum=512,
    maximum=1024,
    value=1024,
    step=64,
    label="Input_size",
    info="Our model was trained on a size of 1024",
)

with gr.Blocks(css=css, title="Efficient SAM") as demo:
    with gr.Row():
        with gr.Column(scale=1):
            # Title
            gr.Markdown(title)

    with gr.Tab("Point mode"):
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_p.render()

            with gr.Column(scale=1):
                segm_img_p.render()

        # Submit & Clear
        # ###
        with gr.Row():
            with gr.Column():

                with gr.Column():
                    segment_btn_p = gr.Button(
                        "Segment with Point Prompt", variant="primary"
                    )
                    clear_btn_p = gr.Button("Clear", variant="secondary")

                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[cond_img_p],
                    examples_per_page=4,
                )

            with gr.Column():
                # Description
                gr.Markdown(description_p)

    with gr.Tab("Box mode"):
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_b.render()

            with gr.Column(scale=1):
                segm_img_b.render()

        # Submit & Clear
        with gr.Row():
            with gr.Column():

                with gr.Column():
                    segment_btn_b = gr.Button(
                        "Segment with Box Prompt", variant="primary"
                    )
                    clear_btn_b = gr.Button("Clear", variant="secondary")

                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[cond_img_b],

                    examples_per_page=4,
                )

            with gr.Column():
                # Description
                gr.Markdown(description_p)

    cond_img_p.select(get_points_with_draw, [segm_img_p, cond_img_p, global_points, global_point_label], [segm_img_p, global_points, global_point_label])

    cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b, global_points, global_point_label], [segm_img_b, global_points, global_point_label])

    segment_btn_p.click(
        segment_with_points, inputs=[cond_img_p, global_points, global_point_label], outputs=[segm_img_p, global_points, global_point_label]
    )

    segment_btn_b.click(
        segment_with_boxs, inputs=[cond_img_b, segm_img_b, global_points, global_point_label], outputs=[segm_img_b,global_points, global_point_label]
    )

    def clear():
        return None, None, [], []

    clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, global_points, global_point_label])
    clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b, global_points, global_point_label])

demo.queue()
demo.launch()