Spaces:
Sleeping
Sleeping
make some updates
Browse files
app.py
CHANGED
@@ -1,78 +1,441 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import torch
|
|
|
4 |
from torchvision.transforms import ToTensor
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
38 |
|
39 |
# examples
|
40 |
-
examples = [
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
with gr.Row():
|
52 |
-
gr.
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
for pixel in pixels_in_segment:
|
71 |
-
out[pixel[0], pixel[1]] = img[pixel[0], pixel[1]]
|
72 |
-
print(out)
|
73 |
-
return out
|
74 |
|
75 |
-
|
|
|
76 |
|
77 |
-
|
78 |
-
|
|
|
1 |
+
import copy
|
2 |
+
import os # noqa
|
3 |
+
|
4 |
import gradio as gr
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
+
from PIL import ImageDraw
|
8 |
from torchvision.transforms import ToTensor
|
9 |
+
|
10 |
+
from utils.tools import format_results, point_prompt
|
11 |
+
from utils.tools_gradio import fast_process
|
12 |
+
|
13 |
+
# Most of our demo code is from [FastSAM Demo](https://huggingface.co/spaces/An-619/FastSAM). Thanks for AN-619.
|
14 |
+
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
|
17 |
+
gpu_checkpoint_path = "efficientsam_s_gpu.jit"
|
18 |
+
cpu_checkpoint_path = "efficientsam_s_cpu.jit"
|
19 |
+
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
model = torch.jit.load(gpu_checkpoint_path)
|
22 |
+
else:
|
23 |
+
model = torch.jit.load(cpu_checkpoint_path)
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
# Description
|
27 |
+
title = "<center><strong><font size='8'>Efficient Segment Anything(EfficientSAM)<font></strong></center>"
|
28 |
+
|
29 |
+
description_e = """This is a demo of [Efficient Segment Anything(EfficientSAM) Model](https://github.com/yformer/EfficientSAM).
|
30 |
+
"""
|
31 |
+
|
32 |
+
description_p = """# Interactive Instance Segmentation
|
33 |
+
- Point-prompt instruction
|
34 |
+
<ol>
|
35 |
+
<li> Click on the left image (point input), visualizing the point on the right image </li>
|
36 |
+
<li> Click the button of Segment with Point Prompt </li>
|
37 |
+
</ol>
|
38 |
+
- Box-prompt instruction
|
39 |
+
<ol>
|
40 |
+
<li> Click on the left image (one point input), visualizing the point on the right image </li>
|
41 |
+
<li> Click on the left image (another point input), visualizing the point and the box on the right image</li>
|
42 |
+
<li> Click the button of Segment with Box Prompt </li>
|
43 |
+
</ol>
|
44 |
+
- Github [link](https://github.com/yformer/EfficientSAM)
|
45 |
+
"""
|
46 |
|
47 |
# examples
|
48 |
+
examples = [
|
49 |
+
["examples/image1.jpg"],
|
50 |
+
["examples/image2.jpg"],
|
51 |
+
["examples/image3.jpg"],
|
52 |
+
["examples/image4.jpg"],
|
53 |
+
["examples/image5.jpg"],
|
54 |
+
["examples/image6.jpg"],
|
55 |
+
["examples/image7.jpg"],
|
56 |
+
["examples/image8.jpg"],
|
57 |
+
["examples/image9.jpg"],
|
58 |
+
["examples/image10.jpg"],
|
59 |
+
["examples/image11.jpg"],
|
60 |
+
["examples/image12.jpg"],
|
61 |
+
["examples/image13.jpg"],
|
62 |
+
["examples/image14.jpg"],
|
63 |
+
]
|
64 |
|
65 |
+
default_example = examples[0]
|
66 |
|
67 |
+
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
|
68 |
+
|
69 |
+
|
70 |
+
def segment_with_boxs(
|
71 |
+
image,
|
72 |
+
seg_image,
|
73 |
+
input_size=1024,
|
74 |
+
better_quality=False,
|
75 |
+
withContours=True,
|
76 |
+
use_retina=True,
|
77 |
+
mask_random_color=True,
|
78 |
+
):
|
79 |
+
try:
|
80 |
+
global global_points
|
81 |
+
global global_point_label
|
82 |
+
if len(global_points) < 2:
|
83 |
+
return seg_image
|
84 |
+
print("Original Image : ", image.size)
|
85 |
+
|
86 |
+
input_size = int(input_size)
|
87 |
+
w, h = image.size
|
88 |
+
scale = input_size / max(w, h)
|
89 |
+
new_w = int(w * scale)
|
90 |
+
new_h = int(h * scale)
|
91 |
+
image = image.resize((new_w, new_h))
|
92 |
+
|
93 |
+
print("Scaled Image : ", image.size)
|
94 |
+
print("Scale : ", scale)
|
95 |
+
|
96 |
+
scaled_points = np.array(
|
97 |
+
[[int(x * scale) for x in point] for point in global_points]
|
98 |
+
)
|
99 |
+
scaled_points = scaled_points[:2]
|
100 |
+
scaled_point_label = np.array(global_point_label)[:2]
|
101 |
+
|
102 |
+
print(scaled_points, scaled_points is not None)
|
103 |
+
print(scaled_point_label, scaled_point_label is not None)
|
104 |
+
|
105 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
106 |
+
print("No points selected")
|
107 |
+
return image
|
108 |
+
|
109 |
+
nd_image = np.array(image)
|
110 |
+
img_tensor = ToTensor()(nd_image)
|
111 |
+
|
112 |
+
print(img_tensor.shape)
|
113 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
114 |
+
pts_sampled = pts_sampled[:, :, :2, :]
|
115 |
+
pts_labels = torch.reshape(torch.tensor([2, 3]), [1, 1, 2])
|
116 |
+
|
117 |
+
predicted_logits, predicted_iou = model(
|
118 |
+
img_tensor[None, ...].to(device),
|
119 |
+
pts_sampled.to(device),
|
120 |
+
pts_labels.to(device),
|
121 |
+
)
|
122 |
+
predicted_logits = predicted_logits.cpu()
|
123 |
+
all_masks = torch.ge(
|
124 |
+
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
125 |
+
).numpy()
|
126 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
127 |
+
|
128 |
+
max_predicted_iou = -1
|
129 |
+
selected_mask_using_predicted_iou = None
|
130 |
+
selected_predicted_iou = None
|
131 |
+
|
132 |
+
for m in range(all_masks.shape[0]):
|
133 |
+
curr_predicted_iou = predicted_iou[m]
|
134 |
+
if (
|
135 |
+
curr_predicted_iou > max_predicted_iou
|
136 |
+
or selected_mask_using_predicted_iou is None
|
137 |
+
):
|
138 |
+
max_predicted_iou = curr_predicted_iou
|
139 |
+
selected_mask_using_predicted_iou = all_masks[m : m + 1]
|
140 |
+
selected_predicted_iou = predicted_iou[m : m + 1]
|
141 |
+
|
142 |
+
results = format_results(
|
143 |
+
selected_mask_using_predicted_iou,
|
144 |
+
selected_predicted_iou,
|
145 |
+
predicted_logits,
|
146 |
+
0,
|
147 |
+
)
|
148 |
+
|
149 |
+
annotations = results[0]["segmentation"]
|
150 |
+
annotations = np.array([annotations])
|
151 |
+
print(scaled_points.shape)
|
152 |
+
fig = fast_process(
|
153 |
+
annotations=annotations,
|
154 |
+
image=image,
|
155 |
+
device=device,
|
156 |
+
scale=(1024 // input_size),
|
157 |
+
better_quality=better_quality,
|
158 |
+
mask_random_color=mask_random_color,
|
159 |
+
use_retina=use_retina,
|
160 |
+
bbox=scaled_points.reshape([4]),
|
161 |
+
withContours=withContours,
|
162 |
+
)
|
163 |
+
|
164 |
+
global_points = []
|
165 |
+
global_point_label = []
|
166 |
+
# return fig, None
|
167 |
+
return fig
|
168 |
+
except:
|
169 |
+
return image
|
170 |
+
|
171 |
+
|
172 |
+
def segment_with_points(
|
173 |
+
image,
|
174 |
+
input_size=1024,
|
175 |
+
better_quality=False,
|
176 |
+
withContours=True,
|
177 |
+
use_retina=True,
|
178 |
+
mask_random_color=True,
|
179 |
+
):
|
180 |
+
try:
|
181 |
+
global global_points
|
182 |
+
global global_point_label
|
183 |
+
|
184 |
+
print("Original Image : ", image.size)
|
185 |
+
|
186 |
+
input_size = int(input_size)
|
187 |
+
w, h = image.size
|
188 |
+
scale = input_size / max(w, h)
|
189 |
+
new_w = int(w * scale)
|
190 |
+
new_h = int(h * scale)
|
191 |
+
image = image.resize((new_w, new_h))
|
192 |
+
|
193 |
+
print("Scaled Image : ", image.size)
|
194 |
+
print("Scale : ", scale)
|
195 |
+
|
196 |
+
if global_points is None:
|
197 |
+
return image
|
198 |
+
if len(global_points) < 1:
|
199 |
+
return image
|
200 |
+
scaled_points = np.array(
|
201 |
+
[[int(x * scale) for x in point] for point in global_points]
|
202 |
+
)
|
203 |
+
scaled_point_label = np.array(global_point_label)
|
204 |
+
|
205 |
+
print(scaled_points, scaled_points is not None)
|
206 |
+
print(scaled_point_label, scaled_point_label is not None)
|
207 |
+
|
208 |
+
if scaled_points.size == 0 and scaled_point_label.size == 0:
|
209 |
+
print("No points selected")
|
210 |
+
return image
|
211 |
+
|
212 |
+
nd_image = np.array(image)
|
213 |
+
img_tensor = ToTensor()(nd_image)
|
214 |
+
|
215 |
+
print(img_tensor.shape)
|
216 |
+
pts_sampled = torch.reshape(torch.tensor(scaled_points), [1, 1, -1, 2])
|
217 |
+
pts_labels = torch.reshape(torch.tensor(global_point_label), [1, 1, -1])
|
218 |
+
|
219 |
+
predicted_logits, predicted_iou = model(
|
220 |
+
img_tensor[None, ...].to(device),
|
221 |
+
pts_sampled.to(device),
|
222 |
+
pts_labels.to(device),
|
223 |
+
)
|
224 |
+
predicted_logits = predicted_logits.cpu()
|
225 |
+
all_masks = torch.ge(
|
226 |
+
torch.sigmoid(predicted_logits[0, 0, :, :, :]), 0.5
|
227 |
+
).numpy()
|
228 |
+
predicted_iou = predicted_iou[0, 0, ...].cpu().detach().numpy()
|
229 |
+
|
230 |
+
results = format_results(all_masks, predicted_iou, predicted_logits, 0)
|
231 |
|
232 |
+
annotations, _ = point_prompt(
|
233 |
+
results, scaled_points, scaled_point_label, new_h, new_w
|
234 |
+
)
|
235 |
+
annotations = np.array([annotations])
|
236 |
+
|
237 |
+
fig = fast_process(
|
238 |
+
annotations=annotations,
|
239 |
+
image=image,
|
240 |
+
device=device,
|
241 |
+
scale=(1024 // input_size),
|
242 |
+
better_quality=better_quality,
|
243 |
+
mask_random_color=mask_random_color,
|
244 |
+
points=scaled_points,
|
245 |
+
bbox=None,
|
246 |
+
use_retina=use_retina,
|
247 |
+
withContours=withContours,
|
248 |
+
)
|
249 |
+
|
250 |
+
global_points = []
|
251 |
+
global_point_label = []
|
252 |
+
# return fig, None
|
253 |
+
return fig
|
254 |
+
except:
|
255 |
+
return image
|
256 |
+
|
257 |
+
|
258 |
+
def get_points_with_draw(image, cond_image, evt: gr.SelectData):
|
259 |
+
global global_points
|
260 |
+
global global_point_label
|
261 |
+
if len(global_points) == 0:
|
262 |
+
image = copy.deepcopy(cond_image)
|
263 |
+
x, y = evt.index[0], evt.index[1]
|
264 |
+
label = "Add Mask"
|
265 |
+
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|
266 |
+
255,
|
267 |
+
0,
|
268 |
+
255,
|
269 |
+
)
|
270 |
+
global_points.append([x, y])
|
271 |
+
global_point_label.append(1 if label == "Add Mask" else 0)
|
272 |
+
|
273 |
+
print(x, y, label == "Add Mask")
|
274 |
+
|
275 |
+
if image is not None:
|
276 |
+
draw = ImageDraw.Draw(image)
|
277 |
+
|
278 |
+
draw.ellipse(
|
279 |
+
[
|
280 |
+
(x - point_radius, y - point_radius),
|
281 |
+
(x + point_radius, y + point_radius),
|
282 |
+
],
|
283 |
+
fill=point_color,
|
284 |
+
)
|
285 |
+
|
286 |
+
return image
|
287 |
+
|
288 |
+
|
289 |
+
def get_points_with_draw_(image, cond_image, evt: gr.SelectData):
|
290 |
+
global global_points
|
291 |
+
global global_point_label
|
292 |
+
if len(global_points) == 0:
|
293 |
+
image = copy.deepcopy(cond_image)
|
294 |
+
if len(global_points) > 2:
|
295 |
+
return image
|
296 |
+
x, y = evt.index[0], evt.index[1]
|
297 |
+
label = "Add Mask"
|
298 |
+
point_radius, point_color = 15, (255, 255, 0) if label == "Add Mask" else (
|
299 |
+
255,
|
300 |
+
0,
|
301 |
+
255,
|
302 |
+
)
|
303 |
+
global_points.append([x, y])
|
304 |
+
global_point_label.append(1 if label == "Add Mask" else 0)
|
305 |
+
|
306 |
+
print(x, y, label == "Add Mask")
|
307 |
+
|
308 |
+
if image is not None:
|
309 |
+
draw = ImageDraw.Draw(image)
|
310 |
+
|
311 |
+
draw.ellipse(
|
312 |
+
[
|
313 |
+
(x - point_radius, y - point_radius),
|
314 |
+
(x + point_radius, y + point_radius),
|
315 |
+
],
|
316 |
+
fill=point_color,
|
317 |
+
)
|
318 |
+
|
319 |
+
if len(global_points) == 2:
|
320 |
+
x1, y1 = global_points[0]
|
321 |
+
x2, y2 = global_points[1]
|
322 |
+
if x1 < x2:
|
323 |
+
draw.rectangle([x1, y1, x2, y2], outline="red", width=5)
|
324 |
+
else:
|
325 |
+
draw.rectangle([x2, y2, x1, y1], outline="red", width=5)
|
326 |
+
global_points = global_points[::-1]
|
327 |
+
global_point_label = global_point_label[::-1]
|
328 |
+
|
329 |
+
return image
|
330 |
+
|
331 |
+
|
332 |
+
cond_img_p = gr.Image(label="Input with Point", value=default_example[0], type="pil")
|
333 |
+
cond_img_b = gr.Image(label="Input with Box", value=default_example[0], type="pil")
|
334 |
+
|
335 |
+
segm_img_p = gr.Image(
|
336 |
+
label="Segmented Image with Point-Prompt", interactive=False, type="pil"
|
337 |
+
)
|
338 |
+
segm_img_b = gr.Image(
|
339 |
+
label="Segmented Image with Box-Prompt", interactive=False, type="pil"
|
340 |
+
)
|
341 |
+
|
342 |
+
global_points = []
|
343 |
+
global_point_label = []
|
344 |
+
|
345 |
+
input_size_slider = gr.components.Slider(
|
346 |
+
minimum=512,
|
347 |
+
maximum=1024,
|
348 |
+
value=1024,
|
349 |
+
step=64,
|
350 |
+
label="Input_size",
|
351 |
+
info="Our model was trained on a size of 1024",
|
352 |
+
)
|
353 |
+
|
354 |
+
with gr.Blocks(css=css, title="Efficient SAM") as demo:
|
355 |
with gr.Row():
|
356 |
+
with gr.Column(scale=1):
|
357 |
+
# Title
|
358 |
+
gr.Markdown(title)
|
359 |
+
|
360 |
+
with gr.Tab("Point mode"):
|
361 |
+
# Images
|
362 |
+
with gr.Row(variant="panel"):
|
363 |
+
with gr.Column(scale=1):
|
364 |
+
cond_img_p.render()
|
365 |
+
|
366 |
+
with gr.Column(scale=1):
|
367 |
+
segm_img_p.render()
|
368 |
+
|
369 |
+
# Submit & Clear
|
370 |
+
# ###
|
371 |
+
with gr.Row():
|
372 |
+
with gr.Column():
|
373 |
+
|
374 |
+
with gr.Column():
|
375 |
+
segment_btn_p = gr.Button(
|
376 |
+
"Segment with Point Prompt", variant="primary"
|
377 |
+
)
|
378 |
+
clear_btn_p = gr.Button("Clear", variant="secondary")
|
379 |
+
|
380 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
381 |
+
gr.Examples(
|
382 |
+
examples=examples,
|
383 |
+
inputs=[cond_img_p],
|
384 |
+
examples_per_page=4,
|
385 |
+
)
|
386 |
|
387 |
+
with gr.Column():
|
388 |
+
# Description
|
389 |
+
gr.Markdown(description_p)
|
390 |
|
391 |
+
with gr.Tab("Box mode"):
|
392 |
+
# Images
|
393 |
+
with gr.Row(variant="panel"):
|
394 |
+
with gr.Column(scale=1):
|
395 |
+
cond_img_b.render()
|
396 |
|
397 |
+
with gr.Column(scale=1):
|
398 |
+
segm_img_b.render()
|
399 |
+
|
400 |
+
# Submit & Clear
|
401 |
+
with gr.Row():
|
402 |
+
with gr.Column():
|
403 |
+
|
404 |
+
with gr.Column():
|
405 |
+
segment_btn_b = gr.Button(
|
406 |
+
"Segment with Box Prompt", variant="primary"
|
407 |
+
)
|
408 |
+
clear_btn_b = gr.Button("Clear", variant="secondary")
|
409 |
+
|
410 |
+
gr.Markdown("Try some of the examples below ⬇️")
|
411 |
+
gr.Examples(
|
412 |
+
examples=examples,
|
413 |
+
inputs=[cond_img_b],
|
414 |
+
examples_per_page=4,
|
415 |
+
)
|
416 |
+
|
417 |
+
with gr.Column():
|
418 |
+
# Description
|
419 |
+
gr.Markdown(description_p)
|
420 |
+
|
421 |
+
cond_img_p.select(get_points_with_draw, [segm_img_p, cond_img_p], segm_img_p)
|
422 |
+
|
423 |
+
cond_img_b.select(get_points_with_draw_, [segm_img_b, cond_img_b], segm_img_b)
|
424 |
+
|
425 |
+
segment_btn_p.click(segment_with_points, inputs=[cond_img_p], outputs=segm_img_p)
|
426 |
+
|
427 |
+
segment_btn_b.click(
|
428 |
+
segment_with_boxs, inputs=[cond_img_b, segm_img_b], outputs=segm_img_b
|
429 |
+
)
|
430 |
|
431 |
+
def clear():
|
432 |
+
return None, None
|
433 |
|
434 |
+
def clear_text():
|
435 |
+
return None, None, None
|
|
|
|
|
|
|
|
|
436 |
|
437 |
+
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])
|
438 |
+
clear_btn_b.click(clear, outputs=[cond_img_b, segm_img_b])
|
439 |
|
440 |
+
demo.queue()
|
441 |
+
demo.launch(share=True)
|