|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import PIL.Image |
|
import PIL.ImageOps |
|
import numpy as np |
|
import tensorflow as tf |
|
from PIL import ImageDraw |
|
from PIL import ImageFont |
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
KEYPOINT_DICT = { |
|
'nose': 0, |
|
'left_eye': 1, |
|
'right_eye': 2, |
|
'left_ear': 3, |
|
'right_ear': 4, |
|
'left_shoulder': 5, |
|
'right_shoulder': 6, |
|
'left_elbow': 7, |
|
'right_elbow': 8, |
|
'left_wrist': 9, |
|
'right_wrist': 10, |
|
'left_hip': 11, |
|
'right_hip': 12, |
|
'left_knee': 13, |
|
'right_knee': 14, |
|
'left_ankle': 15, |
|
'right_ankle': 16 |
|
} |
|
|
|
KEYPOINT_EDGE_INDS_TO_COLOR = { |
|
(0, 1): 'Magenta', |
|
(0, 2): 'Cyan', |
|
(1, 3): 'Magenta', |
|
(2, 4): 'Cyan', |
|
(0, 5): 'Magenta', |
|
(0, 6): 'Cyan', |
|
(5, 7): 'Magenta', |
|
(7, 9): 'Magenta', |
|
(6, 8): 'Cyan', |
|
(8, 10): 'Cyan', |
|
(5, 6): 'Yellow', |
|
(5, 11): 'Magenta', |
|
(6, 12): 'Cyan', |
|
(11, 12): 'Yellow', |
|
(11, 13): 'Magenta', |
|
(13, 15): 'Magenta', |
|
(12, 14): 'Cyan', |
|
(14, 16): 'Cyan' |
|
} |
|
|
|
|
|
def process_keypoints(keypoints_with_scores, height, width, threshold=0.11): |
|
"""Returns high confidence keypoints and edges for visualization. |
|
|
|
Args: |
|
keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing |
|
the keypoint coordinates and scores returned from the MoveNet model. |
|
height: height of the image in pixels. |
|
width: width of the image in pixels. |
|
threshold: minimum confidence score for a keypoint to be |
|
visualized. |
|
|
|
Returns: |
|
A (joints, bones, colors) containing: |
|
* the coordinates of all keypoints of all detected entities; |
|
* the coordinates of all skeleton edges of all detected entities; |
|
* the colors in which the edges should be plotted. |
|
""" |
|
keypoints_all = [] |
|
keypoint_edges_all = [] |
|
num_instances, _, _, _ = keypoints_with_scores.shape |
|
for idx in range(num_instances): |
|
kpts_x = keypoints_with_scores[0, idx, :, 1] |
|
kpts_y = keypoints_with_scores[0, idx, :, 0] |
|
kpts_scores = keypoints_with_scores[0, idx, :, 2] |
|
kpts_dict = list(KEYPOINT_DICT.keys()) |
|
kpts_absolute_xy = np.stack([kpts_dict, width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1) |
|
kpts_above_thresh_absolute = kpts_absolute_xy[kpts_scores > threshold, :] |
|
keypoints_all.append(kpts_above_thresh_absolute) |
|
|
|
for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items(): |
|
if kpts_scores[edge_pair[0]] > threshold and kpts_scores[edge_pair[1]] > threshold: |
|
x_start = kpts_absolute_xy[edge_pair[0], 1] |
|
y_start = kpts_absolute_xy[edge_pair[0], 2] |
|
x_end = kpts_absolute_xy[edge_pair[1], 1] |
|
y_end = kpts_absolute_xy[edge_pair[1], 2] |
|
line_seg = np.array([[x_start, y_start], [x_end, y_end]]) |
|
keypoint_edges_all.append([line_seg, color]) |
|
if keypoints_all: |
|
keypoints_xy = np.concatenate(keypoints_all, axis=0) |
|
else: |
|
keypoints_xy = np.zeros((0, 17, 2)) |
|
|
|
if keypoint_edges_all: |
|
edges_xy = np.stack(keypoint_edges_all, axis=0) |
|
else: |
|
edges_xy = np.zeros((0, 2, 2)) |
|
return keypoints_xy, edges_xy |
|
|
|
|
|
def draw_bones(pixmap: PIL.Image, keypoints): |
|
draw = ImageDraw.Draw(pixmap) |
|
joints, bones = process_keypoints(keypoints, pixmap.height, pixmap.width) |
|
|
|
font = ImageFont.truetype("./Arial.ttf", 22) |
|
print(joints) |
|
|
|
for bone, color in bones: |
|
bone = bone.astype(np.float32) |
|
draw.line((*bone[0], *bone[1]), fill=color, width=4) |
|
|
|
radio = 3 |
|
|
|
for label, c_x, c_y in joints: |
|
c_x = float(c_x) |
|
c_y = float(c_y) |
|
shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)] |
|
draw.ellipse(shape, fill="red", outline="red") |
|
draw.text((c_x, c_y), label, font=font, align="left", fill="blue") |
|
|
|
return joints |
|
|
|
|
|
def movenet(image): |
|
"""Runs detection on an input image. |
|
|
|
Args: |
|
image: A [1, height, width, 3] tensor represents the input image |
|
pixels. Note that the height/width should already be resized and match the |
|
expected input resolution of the model before passing into this function. |
|
|
|
Returns: |
|
A [1, 1, 17, 3] float numpy array representing the predicted keypoint |
|
coordinates and scores. |
|
""" |
|
model_path = snapshot_download("leonelhs/movenet") |
|
module = tf.saved_model.load(model_path) |
|
model = module.signatures['serving_default'] |
|
|
|
image = tf.cast(image, dtype=tf.int32) |
|
|
|
outputs = model(image) |
|
|
|
return outputs['output_0'].numpy() |
|
|