leonelhs commited on
Commit
9c8f48a
·
1 Parent(s): 3c9cc79

show pose body lables

Browse files
Files changed (4) hide show
  1. .gitignore +2 -2
  2. Arial.ttf +0 -0
  3. app.py +15 -4
  4. poser.py +51 -41
.gitignore CHANGED
@@ -1,4 +1,4 @@
1
  .idea/
2
  __pycache__/
3
- requirements.txt
4
- push_model.py
 
1
  .idea/
2
  __pycache__/
3
+ playground.py
4
+
Arial.ttf ADDED
Binary file (276 kB). View file
 
app.py CHANGED
@@ -11,6 +11,7 @@ def predict(image: PIL.Image):
11
  input_size = 256
12
  size = (1280, 1280)
13
  image = PIL.ImageOps.fit(image, size, PIL.Image.LANCZOS)
 
14
  image_tf = tf.keras.preprocessing.image.img_to_array(image)
15
  # Resize and pad the image to keep the aspect ratio and fit the expected size.
16
  input_image = tf.expand_dims(image_tf, axis=0)
@@ -18,8 +19,9 @@ def predict(image: PIL.Image):
18
  keypoints = movenet(input_image)
19
  keypoints = np.array(keypoints)
20
  image = tf.keras.preprocessing.image.array_to_img(image_tf)
21
- draw_bones(image, keypoints)
22
- return image
 
23
 
24
 
25
  footer = r"""
@@ -39,9 +41,18 @@ with gr.Blocks(title="MoveNet") as app:
39
  run_btn = gr.Button(variant="primary")
40
  with gr.Column():
41
  output_img = gr.Image(type="numpy", label="Output image")
42
- gr.ClearButton(components=[input_img, output_img], variant="stop")
 
 
 
 
 
 
 
 
 
43
 
44
- run_btn.click(predict, [input_img], [output_img])
45
 
46
  with gr.Row():
47
  blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
 
11
  input_size = 256
12
  size = (1280, 1280)
13
  image = PIL.ImageOps.fit(image, size, PIL.Image.LANCZOS)
14
+ # image = PIL.ImageOps.contain(image, size)
15
  image_tf = tf.keras.preprocessing.image.img_to_array(image)
16
  # Resize and pad the image to keep the aspect ratio and fit the expected size.
17
  input_image = tf.expand_dims(image_tf, axis=0)
 
19
  keypoints = movenet(input_image)
20
  keypoints = np.array(keypoints)
21
  image = tf.keras.preprocessing.image.array_to_img(image_tf)
22
+ joints = draw_bones(image, keypoints)
23
+ points = [f"{x}#{y}" for p, x, y in joints]
24
+ return image, joints, points
25
 
26
 
27
  footer = r"""
 
41
  run_btn = gr.Button(variant="primary")
42
  with gr.Column():
43
  output_img = gr.Image(type="numpy", label="Output image")
44
+ with gr.Accordion("See Positions", open=False):
45
+ positions = gr.Dataframe(
46
+ interactive=True,
47
+ headers=["x", "y", "label"],
48
+ datatype=["str", "number", "number"],
49
+ row_count=16,
50
+ col_count=(3, "fixed"),
51
+ )
52
+ data = gr.Textbox(label="Positions", lines=17)
53
+ gr.ClearButton(components=[input_img, output_img, positions, data], variant="stop")
54
 
55
+ run_btn.click(predict, [input_img], [output_img, positions, data])
56
 
57
  with gr.Row():
58
  blobs = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
poser.py CHANGED
@@ -10,23 +10,31 @@ import PIL.ImageOps
10
  import numpy as np
11
  import tensorflow as tf
12
  from PIL import ImageDraw
 
13
  from huggingface_hub import snapshot_download
14
 
15
-
16
  # Dictionary that maps from joint names to keypoint indices.
17
  KEYPOINT_DICT = {
18
  'nose': 0,
19
- 'left_eye': 1, 'right_eye': 2,
20
- 'left_ear': 3, 'right_ear': 4,
21
- 'left_shoulder': 5, 'right_shoulder': 6,
22
- 'left_elbow': 7, 'right_elbow': 8,
23
- 'left_wrist': 9, 'right_wrist': 10,
24
- 'left_hip': 11, 'right_hip': 12,
25
- 'left_knee': 13, 'right_knee': 14,
26
- 'left_ankle': 15, 'right_ankle': 16
 
 
 
 
 
 
 
 
27
  }
28
 
29
- COLOR_DICT = {
30
  (0, 1): 'Magenta',
31
  (0, 2): 'Cyan',
32
  (1, 3): 'Magenta',
@@ -48,11 +56,11 @@ COLOR_DICT = {
48
  }
49
 
50
 
51
- def process_keypoints(keypoints, height, width, threshold=0.22):
52
  """Returns high confidence keypoints and edges for visualization.
53
 
54
  Args:
55
- keypoints: A numpy array with shape [1, 1, 17, 3] representing
56
  the keypoint coordinates and scores returned from the MoveNet model.
57
  height: height of the image in pixels.
58
  width: width of the image in pixels.
@@ -67,52 +75,57 @@ def process_keypoints(keypoints, height, width, threshold=0.22):
67
  """
68
  keypoints_all = []
69
  keypoint_edges_all = []
70
- colors = []
71
- num_instances, _, _, _ = keypoints.shape
72
  for idx in range(num_instances):
73
- kpts_x = keypoints[0, idx, :, 1]
74
- kpts_y = keypoints[0, idx, :, 0]
75
- kpts_scores = keypoints[0, idx, :, 2]
76
- kpts_absolute_xy = np.stack(
77
- [width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
78
- kpts_above_thresh_absolute = kpts_absolute_xy[
79
- kpts_scores > threshold, :]
80
  keypoints_all.append(kpts_above_thresh_absolute)
81
 
82
- for edge_pair, color in COLOR_DICT.items():
83
- if (kpts_scores[edge_pair[0]] > threshold and
84
- kpts_scores[edge_pair[1]] > threshold):
85
- x_start = kpts_absolute_xy[edge_pair[0], 0]
86
- y_start = kpts_absolute_xy[edge_pair[0], 1]
87
- x_end = kpts_absolute_xy[edge_pair[1], 0]
88
- y_end = kpts_absolute_xy[edge_pair[1], 1]
89
  line_seg = np.array([[x_start, y_start], [x_end, y_end]])
90
- keypoint_edges_all.append(line_seg)
91
- colors.append(color)
92
  if keypoints_all:
93
- joints = np.concatenate(keypoints_all, axis=0)
94
  else:
95
- joints = np.zeros((0, 17, 2))
96
 
97
  if keypoint_edges_all:
98
- bones = np.stack(keypoint_edges_all, axis=0)
99
  else:
100
- bones = np.zeros((0, 2, 2))
101
- return joints, bones, colors
102
 
103
 
104
  def draw_bones(pixmap: PIL.Image, keypoints):
105
  draw = ImageDraw.Draw(pixmap)
106
- joints, bones, colors = process_keypoints(keypoints, pixmap.height, pixmap.width)
 
 
 
107
 
108
- for bone, color in zip(bones.tolist(), colors):
 
109
  draw.line((*bone[0], *bone[1]), fill=color, width=4)
110
 
111
  radio = 3
112
 
113
- for c_x, c_y in joints:
 
 
114
  shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)]
115
  draw.ellipse(shape, fill="red", outline="red")
 
 
 
116
 
117
 
118
  def movenet(image):
@@ -136,6 +149,3 @@ def movenet(image):
136
  outputs = model(image)
137
  # Output is a [1, 1, 17, 3] tensor.
138
  return outputs['output_0'].numpy()
139
-
140
-
141
-
 
10
  import numpy as np
11
  import tensorflow as tf
12
  from PIL import ImageDraw
13
+ from PIL import ImageFont
14
  from huggingface_hub import snapshot_download
15
 
 
16
  # Dictionary that maps from joint names to keypoint indices.
17
  KEYPOINT_DICT = {
18
  'nose': 0,
19
+ 'left_eye': 1,
20
+ 'right_eye': 2,
21
+ 'left_ear': 3,
22
+ 'right_ear': 4,
23
+ 'left_shoulder': 5,
24
+ 'right_shoulder': 6,
25
+ 'left_elbow': 7,
26
+ 'right_elbow': 8,
27
+ 'left_wrist': 9,
28
+ 'right_wrist': 10,
29
+ 'left_hip': 11,
30
+ 'right_hip': 12,
31
+ 'left_knee': 13,
32
+ 'right_knee': 14,
33
+ 'left_ankle': 15,
34
+ 'right_ankle': 16
35
  }
36
 
37
+ KEYPOINT_EDGE_INDS_TO_COLOR = {
38
  (0, 1): 'Magenta',
39
  (0, 2): 'Cyan',
40
  (1, 3): 'Magenta',
 
56
  }
57
 
58
 
59
+ def process_keypoints(keypoints_with_scores, height, width, threshold=0.11):
60
  """Returns high confidence keypoints and edges for visualization.
61
 
62
  Args:
63
+ keypoints_with_scores: A numpy array with shape [1, 1, 17, 3] representing
64
  the keypoint coordinates and scores returned from the MoveNet model.
65
  height: height of the image in pixels.
66
  width: width of the image in pixels.
 
75
  """
76
  keypoints_all = []
77
  keypoint_edges_all = []
78
+ num_instances, _, _, _ = keypoints_with_scores.shape
 
79
  for idx in range(num_instances):
80
+ kpts_x = keypoints_with_scores[0, idx, :, 1]
81
+ kpts_y = keypoints_with_scores[0, idx, :, 0]
82
+ kpts_scores = keypoints_with_scores[0, idx, :, 2]
83
+ kpts_dict = list(KEYPOINT_DICT.keys())
84
+ kpts_absolute_xy = np.stack([kpts_dict, width * np.array(kpts_x), height * np.array(kpts_y)], axis=-1)
85
+ kpts_above_thresh_absolute = kpts_absolute_xy[kpts_scores > threshold, :]
 
86
  keypoints_all.append(kpts_above_thresh_absolute)
87
 
88
+ for edge_pair, color in KEYPOINT_EDGE_INDS_TO_COLOR.items():
89
+ if kpts_scores[edge_pair[0]] > threshold and kpts_scores[edge_pair[1]] > threshold:
90
+ x_start = kpts_absolute_xy[edge_pair[0], 1]
91
+ y_start = kpts_absolute_xy[edge_pair[0], 2]
92
+ x_end = kpts_absolute_xy[edge_pair[1], 1]
93
+ y_end = kpts_absolute_xy[edge_pair[1], 2]
 
94
  line_seg = np.array([[x_start, y_start], [x_end, y_end]])
95
+ keypoint_edges_all.append([line_seg, color])
 
96
  if keypoints_all:
97
+ keypoints_xy = np.concatenate(keypoints_all, axis=0)
98
  else:
99
+ keypoints_xy = np.zeros((0, 17, 2))
100
 
101
  if keypoint_edges_all:
102
+ edges_xy = np.stack(keypoint_edges_all, axis=0)
103
  else:
104
+ edges_xy = np.zeros((0, 2, 2))
105
+ return keypoints_xy, edges_xy
106
 
107
 
108
  def draw_bones(pixmap: PIL.Image, keypoints):
109
  draw = ImageDraw.Draw(pixmap)
110
+ joints, bones = process_keypoints(keypoints, pixmap.height, pixmap.width)
111
+
112
+ font = ImageFont.truetype("./Arial.ttf", 22)
113
+ print(joints)
114
 
115
+ for bone, color in bones:
116
+ bone = bone.astype(np.float32)
117
  draw.line((*bone[0], *bone[1]), fill=color, width=4)
118
 
119
  radio = 3
120
 
121
+ for label, c_x, c_y in joints:
122
+ c_x = float(c_x)
123
+ c_y = float(c_y)
124
  shape = [(c_x - radio, c_y - radio), (c_x + radio, c_y + radio)]
125
  draw.ellipse(shape, fill="red", outline="red")
126
+ draw.text((c_x, c_y), label, font=font, align="left", fill="blue")
127
+
128
+ return joints
129
 
130
 
131
  def movenet(image):
 
149
  outputs = model(image)
150
  # Output is a [1, 1, 17, 3] tensor.
151
  return outputs['output_0'].numpy()