|
|
|
""" |
|
IMPORTS HERE |
|
""" |
|
from langchain_text_splitters import RecursiveCharacterTextSplitter |
|
import chainlit as cl |
|
from langchain_community.document_loaders import PyMuPDFLoader |
|
from langchain_core.prompts import ChatPromptTemplate |
|
from qdrant_client import QdrantClient |
|
from qdrant_client.http.models import Distance, VectorParams |
|
from langchain_openai.embeddings import OpenAIEmbeddings |
|
from langchain.storage import LocalFileStore |
|
from langchain_qdrant import QdrantVectorStore |
|
from langchain.embeddings import CacheBackedEmbeddings |
|
from langchain_core.globals import set_llm_cache |
|
from langchain_openai import ChatOpenAI |
|
from langchain_core.caches import InMemoryCache |
|
from operator import itemgetter |
|
from langchain_core.runnables.passthrough import RunnablePassthrough |
|
from langchain.memory import ChatMessageHistory, ConversationBufferMemory |
|
from chainlit.types import AskFileResponse |
|
from langchain.chains import ( |
|
ConversationalRetrievalChain, |
|
) |
|
import os |
|
import uuid |
|
|
|
|
|
""" |
|
GLOBAL CODE HERE |
|
""" |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) |
|
Loader = PyMuPDFLoader |
|
set_llm_cache(InMemoryCache()) |
|
|
|
|
|
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") |
|
rag_system_prompt_template = """\ |
|
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. |
|
""" |
|
|
|
rag_message_list = [ |
|
{"role" : "system", "content" : rag_system_prompt_template}, |
|
] |
|
|
|
rag_user_prompt_template = """\ |
|
Question: |
|
{question} |
|
Context: |
|
{context} |
|
""" |
|
|
|
chat_prompt = ChatPromptTemplate.from_messages([ |
|
("system", rag_system_prompt_template), |
|
("human", rag_user_prompt_template) |
|
]) |
|
chat_model = ChatOpenAI(model="gpt-4o-mini") |
|
|
|
def process_file(file: AskFileResponse): |
|
import tempfile |
|
|
|
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: |
|
with open(tempfile.name, "wb") as f: |
|
f.write(file.content) |
|
loader = Loader(tempfile.name) |
|
documents = loader.load() |
|
docs = text_splitter.split_documents(documents) |
|
for i, doc in enumerate(docs): |
|
doc.metadata["source"] = f"source_{i}" |
|
return docs |
|
|
|
|
|
|
|
@cl.on_chat_start |
|
async def on_chat_start(): |
|
""" SESSION SPECIFIC CODE HERE """ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
files = None |
|
|
|
|
|
while files == None: |
|
files = await cl.AskFileMessage( |
|
content="Please upload a PDF file to begin!", |
|
accept=["application/pdf"], |
|
max_size_mb=20, |
|
timeout=180, |
|
).send() |
|
|
|
file = files[0] |
|
msg = cl.Message( |
|
content=f"Processing `{file.name}`...", disable_human_feedback=True |
|
) |
|
await msg.send() |
|
|
|
|
|
docs = process_file(file) |
|
|
|
|
|
user_id = str(uuid.uuid4()) |
|
cache_path = f"./cache/user_{user_id}/" |
|
os.makedirs(cache_path, exist_ok=True) |
|
|
|
store = LocalFileStore(cache_path) |
|
cached_embedder = CacheBackedEmbeddings.from_bytes_store( |
|
core_embeddings, store, namespace=f"user_{user_id}" |
|
) |
|
|
|
|
|
collection_name = f"pdf_to_parse_{user_id}" |
|
client = QdrantClient(":memory:") |
|
client.create_collection( |
|
collection_name=collection_name, |
|
vectors_config=VectorParams(size=1536, distance=Distance.COSINE), |
|
) |
|
|
|
vectorstore = QdrantVectorStore( |
|
client=client, |
|
collection_name=collection_name, |
|
embedding=cached_embedder) |
|
vectorstore.add_documents(docs) |
|
rv = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
message_history = ChatMessageHistory() |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key="answer", |
|
chat_memory=message_history, |
|
return_messages=True, |
|
) |
|
|
|
|
|
retrieval_augmented_qa_chain = ConversationalRetrievalChain.from_llm( |
|
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), |
|
chain_type="stuff", |
|
retriever=rv, |
|
memory=memory, |
|
return_source_documents=True, |
|
) |
|
|
|
msg.content = f"Processing `{file.name}` done. You can now ask questions!" |
|
await msg.update() |
|
|
|
|
|
|
|
|
|
|
|
|
|
cl.user_session.set("chain", retrieval_augmented_qa_chain) |
|
|
|
|
|
@cl.author_rename |
|
def rename(orig_author: str): |
|
""" RENAME CODE HERE """ |
|
user_id = cl.user_session.get("user_id") |
|
if not user_id: |
|
|
|
user_id = str(uuid.uuid4()) |
|
cl.user_session.set("user_id", user_id) |
|
|
|
|
|
new_author_name = f"{orig_author}_user_{user_id}" |
|
return new_author_name |
|
|
|
|
|
@cl.on_message |
|
async def main(message: cl.Message): |
|
""" |
|
MESSAGE CODE HERE |
|
""" |
|
chain = cl.user_session.get("chain") |
|
cb = cl.AsyncLangchainCallbackHandler() |
|
|
|
|
|
res = await chain.acall(message.content, callbacks=[cb]) |
|
answer = res["answer"] |
|
source_documents = res["source_documents"] |
|
|
|
text_elements = [] |
|
|
|
if source_documents: |
|
for source_idx, source_doc in enumerate(source_documents): |
|
source_name = f"source_{source_idx}" |
|
|
|
text_elements.append( |
|
cl.Text(content=source_doc.page_content, name=source_name) |
|
) |
|
source_names = [text_el.name for text_el in text_elements] |
|
|
|
if source_names: |
|
answer += f"\nSources: {', '.join(source_names)}" |
|
else: |
|
answer += "\nNo sources found" |
|
|
|
|
|
await cl.Message(content=answer, elements=text_elements, author="bot_for").send() |
|
|