AIE4-W8 / app.py
yinong333's picture
Deploying APP
c64623a
### Import Section ###
"""
IMPORTS HERE
"""
from langchain_text_splitters import RecursiveCharacterTextSplitter
import chainlit as cl
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.prompts import ChatPromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain_qdrant import QdrantVectorStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from chainlit.types import AskFileResponse
from langchain.chains import (
ConversationalRetrievalChain,
)
import os
import uuid
### Global Section ###
"""
GLOBAL CODE HERE
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
Loader = PyMuPDFLoader
set_llm_cache(InMemoryCache())
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [
{"role" : "system", "content" : rag_system_prompt_template},
]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([
("system", rag_system_prompt_template),
("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o-mini")
def process_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
with open(tempfile.name, "wb") as f:
f.write(file.content)
loader = Loader(tempfile.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
""" SESSION SPECIFIC CODE HERE """
#file_path = "https://arxiv.org/pdf/2106.09685"
#loader = Loader(file_path)
#documents = loader.load()
#docs = text_splitter.split_documents(documents)
#for i, doc in enumerate(docs):
#doc.metadata["source"] = f"source_{i}"
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
docs = process_file(file)
# Create a unique cache for each user
user_id = str(uuid.uuid4()) # Unique ID per user
cache_path = f"./cache/user_{user_id}/"
os.makedirs(cache_path, exist_ok=True)
store = LocalFileStore(cache_path)
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=f"user_{user_id}"
)
# Typical QDrant Vector Store Set-up
collection_name = f"pdf_to_parse_{user_id}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder)
vectorstore.add_documents(docs)
rv = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
# Let the user know that the system is ready
# msg = cl.Message(
# content=f"Welcome to the AI Legal Chatbot! Ask me anything about the AI policy", disable_human_feedback=True, author="Chat AI"
# )
# await msg.send()
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Qdrant vector store
retrieval_augmented_qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
chain_type="stuff",
retriever=rv,
memory=memory,
return_source_documents=True,
)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
# retrieval_augmented_qa_chain = (
# {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
# | RunnablePassthrough.assign(context=itemgetter("context"))
# | chat_prompt | chat_model
# )
cl.user_session.set("chain", retrieval_augmented_qa_chain)
### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
""" RENAME CODE HERE """
user_id = cl.user_session.get("user_id") # Retrieve the user_id from the session
if not user_id:
# In case the user_id is not stored yet, generate one
user_id = str(uuid.uuid4())
cl.user_session.set("user_id", user_id)
# Append or modify the original author name with the user-specific ID
new_author_name = f"{orig_author}_user_{user_id}"
return new_author_name
### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
"""
MESSAGE CODE HERE
"""
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
cb = cl.AsyncLangchainCallbackHandler()
#res = await chain.acall(message.content, callbacks=[cb])
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name)
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
# Send the response to the user
await cl.Message(content=answer, elements=text_elements, author="bot_for").send()