File size: 6,863 Bytes
c64623a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
### Import Section ###
"""
IMPORTS HERE
"""
from langchain_text_splitters import RecursiveCharacterTextSplitter
import chainlit as cl
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.prompts import ChatPromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain_qdrant import QdrantVectorStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from chainlit.types import AskFileResponse
from langchain.chains import (
ConversationalRetrievalChain,
)
import os
import uuid
### Global Section ###
"""
GLOBAL CODE HERE
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
Loader = PyMuPDFLoader
set_llm_cache(InMemoryCache())
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""
rag_message_list = [
{"role" : "system", "content" : rag_system_prompt_template},
]
rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""
chat_prompt = ChatPromptTemplate.from_messages([
("system", rag_system_prompt_template),
("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o-mini")
def process_file(file: AskFileResponse):
import tempfile
with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
with open(tempfile.name, "wb") as f:
f.write(file.content)
loader = Loader(tempfile.name)
documents = loader.load()
docs = text_splitter.split_documents(documents)
for i, doc in enumerate(docs):
doc.metadata["source"] = f"source_{i}"
return docs
### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
""" SESSION SPECIFIC CODE HERE """
#file_path = "https://arxiv.org/pdf/2106.09685"
#loader = Loader(file_path)
#documents = loader.load()
#docs = text_splitter.split_documents(documents)
#for i, doc in enumerate(docs):
#doc.metadata["source"] = f"source_{i}"
files = None
# Wait for the user to upload a file
while files == None:
files = await cl.AskFileMessage(
content="Please upload a PDF file to begin!",
accept=["application/pdf"],
max_size_mb=20,
timeout=180,
).send()
file = files[0]
msg = cl.Message(
content=f"Processing `{file.name}`...", disable_human_feedback=True
)
await msg.send()
# load the file
docs = process_file(file)
# Create a unique cache for each user
user_id = str(uuid.uuid4()) # Unique ID per user
cache_path = f"./cache/user_{user_id}/"
os.makedirs(cache_path, exist_ok=True)
store = LocalFileStore(cache_path)
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
core_embeddings, store, namespace=f"user_{user_id}"
)
# Typical QDrant Vector Store Set-up
collection_name = f"pdf_to_parse_{user_id}"
client = QdrantClient(":memory:")
client.create_collection(
collection_name=collection_name,
vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)
vectorstore = QdrantVectorStore(
client=client,
collection_name=collection_name,
embedding=cached_embedder)
vectorstore.add_documents(docs)
rv = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})
# Let the user know that the system is ready
# msg = cl.Message(
# content=f"Welcome to the AI Legal Chatbot! Ask me anything about the AI policy", disable_human_feedback=True, author="Chat AI"
# )
# await msg.send()
message_history = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=message_history,
return_messages=True,
)
# Create a chain that uses the Qdrant vector store
retrieval_augmented_qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
chain_type="stuff",
retriever=rv,
memory=memory,
return_source_documents=True,
)
msg.content = f"Processing `{file.name}` done. You can now ask questions!"
await msg.update()
# retrieval_augmented_qa_chain = (
# {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
# | RunnablePassthrough.assign(context=itemgetter("context"))
# | chat_prompt | chat_model
# )
cl.user_session.set("chain", retrieval_augmented_qa_chain)
### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
""" RENAME CODE HERE """
user_id = cl.user_session.get("user_id") # Retrieve the user_id from the session
if not user_id:
# In case the user_id is not stored yet, generate one
user_id = str(uuid.uuid4())
cl.user_session.set("user_id", user_id)
# Append or modify the original author name with the user-specific ID
new_author_name = f"{orig_author}_user_{user_id}"
return new_author_name
### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
"""
MESSAGE CODE HERE
"""
chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain
cb = cl.AsyncLangchainCallbackHandler()
#res = await chain.acall(message.content, callbacks=[cb])
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"] # type: List[Document]
text_elements = [] # type: List[cl.Text]
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
# Create the text element referenced in the message
text_elements.append(
cl.Text(content=source_doc.page_content, name=source_name)
)
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
# Send the response to the user
await cl.Message(content=answer, elements=text_elements, author="bot_for").send()
|