File size: 6,863 Bytes
c64623a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
### Import Section ###
"""
IMPORTS HERE
"""
from langchain_text_splitters import RecursiveCharacterTextSplitter
import chainlit as cl
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_core.prompts import ChatPromptTemplate
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_openai.embeddings import OpenAIEmbeddings
from langchain.storage import LocalFileStore
from langchain_qdrant import QdrantVectorStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_core.globals import set_llm_cache
from langchain_openai import ChatOpenAI
from langchain_core.caches import InMemoryCache
from operator import itemgetter
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from chainlit.types import AskFileResponse
from langchain.chains import (
    ConversationalRetrievalChain,
)
import os
import uuid

### Global Section ###
"""
GLOBAL CODE HERE
"""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
Loader = PyMuPDFLoader
set_llm_cache(InMemoryCache())


core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
rag_system_prompt_template = """\
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context.
"""

rag_message_list = [
    {"role" : "system", "content" : rag_system_prompt_template},
]

rag_user_prompt_template = """\
Question:
{question}
Context:
{context}
"""

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", rag_system_prompt_template),
    ("human", rag_user_prompt_template)
])
chat_model = ChatOpenAI(model="gpt-4o-mini")

def process_file(file: AskFileResponse):
    import tempfile

    with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile:
        with open(tempfile.name, "wb") as f:
            f.write(file.content)
    loader = Loader(tempfile.name)
    documents = loader.load()
    docs = text_splitter.split_documents(documents)
    for i, doc in enumerate(docs):
        doc.metadata["source"] = f"source_{i}"
    return docs


### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
    """ SESSION SPECIFIC CODE HERE """
    #file_path = "https://arxiv.org/pdf/2106.09685"
    #loader = Loader(file_path)
    #documents = loader.load()
    #docs = text_splitter.split_documents(documents)
    #for i, doc in enumerate(docs):
        #doc.metadata["source"] = f"source_{i}"

    files = None

    # Wait for the user to upload a file
    while files == None:
        files = await cl.AskFileMessage(
            content="Please upload a PDF file to begin!",
            accept=["application/pdf"],
            max_size_mb=20,
            timeout=180,
        ).send()

    file = files[0]
    msg = cl.Message(
        content=f"Processing `{file.name}`...", disable_human_feedback=True
    )
    await msg.send()

    # load the file
    docs = process_file(file)
    
    # Create a unique cache for each user
    user_id = str(uuid.uuid4())  # Unique ID per user
    cache_path = f"./cache/user_{user_id}/"
    os.makedirs(cache_path, exist_ok=True)

    store = LocalFileStore(cache_path)
    cached_embedder = CacheBackedEmbeddings.from_bytes_store(
        core_embeddings, store, namespace=f"user_{user_id}"
    )

    # Typical QDrant Vector Store Set-up
    collection_name = f"pdf_to_parse_{user_id}"
    client = QdrantClient(":memory:")
    client.create_collection(
    collection_name=collection_name,
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
    )

    vectorstore = QdrantVectorStore(
        client=client,
        collection_name=collection_name,
        embedding=cached_embedder)
    vectorstore.add_documents(docs)
    rv = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})

    # Let the user know that the system is ready
    # msg = cl.Message(
    #     content=f"Welcome to the AI Legal Chatbot! Ask me anything about the AI policy", disable_human_feedback=True, author="Chat AI"
    #     )
    # await msg.send()

    message_history = ChatMessageHistory()

    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key="answer",
        chat_memory=message_history,
        return_messages=True,
    )

    # Create a chain that uses the Qdrant vector store
    retrieval_augmented_qa_chain = ConversationalRetrievalChain.from_llm(
        ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True),
        chain_type="stuff",
        retriever=rv,
        memory=memory,
        return_source_documents=True,
    )

    msg.content = f"Processing `{file.name}` done. You can now ask questions!"
    await msg.update()

    # retrieval_augmented_qa_chain = (
    #     {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
    #     | RunnablePassthrough.assign(context=itemgetter("context"))
    #     | chat_prompt | chat_model
    # )
    cl.user_session.set("chain", retrieval_augmented_qa_chain)

### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
    """ RENAME CODE HERE """
    user_id = cl.user_session.get("user_id")  # Retrieve the user_id from the session
    if not user_id:
        # In case the user_id is not stored yet, generate one
        user_id = str(uuid.uuid4())
        cl.user_session.set("user_id", user_id)
        
    # Append or modify the original author name with the user-specific ID
    new_author_name = f"{orig_author}_user_{user_id}"
    return new_author_name

### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
    """
    MESSAGE CODE HERE
    """
    chain = cl.user_session.get("chain")  # type: ConversationalRetrievalChain
    cb = cl.AsyncLangchainCallbackHandler()

    #res = await chain.acall(message.content, callbacks=[cb])
    res = await chain.acall(message.content, callbacks=[cb])
    answer = res["answer"]
    source_documents = res["source_documents"]  # type: List[Document]

    text_elements = []  # type: List[cl.Text]

    if source_documents:
        for source_idx, source_doc in enumerate(source_documents):
            source_name = f"source_{source_idx}"
            # Create the text element referenced in the message
            text_elements.append(
                cl.Text(content=source_doc.page_content, name=source_name)
            )
        source_names = [text_el.name for text_el in text_elements]

        if source_names:
            answer += f"\nSources: {', '.join(source_names)}"
        else:
            answer += "\nNo sources found"
    
    # Send the response to the user
    await cl.Message(content=answer, elements=text_elements, author="bot_for").send()