### Import Section ### """ IMPORTS HERE """ from langchain_text_splitters import RecursiveCharacterTextSplitter import chainlit as cl from langchain_community.document_loaders import PyMuPDFLoader from langchain_core.prompts import ChatPromptTemplate from qdrant_client import QdrantClient from qdrant_client.http.models import Distance, VectorParams from langchain_openai.embeddings import OpenAIEmbeddings from langchain.storage import LocalFileStore from langchain_qdrant import QdrantVectorStore from langchain.embeddings import CacheBackedEmbeddings from langchain_core.globals import set_llm_cache from langchain_openai import ChatOpenAI from langchain_core.caches import InMemoryCache from operator import itemgetter from langchain_core.runnables.passthrough import RunnablePassthrough from langchain.memory import ChatMessageHistory, ConversationBufferMemory from chainlit.types import AskFileResponse from langchain.chains import ( ConversationalRetrievalChain, ) import os import uuid ### Global Section ### """ GLOBAL CODE HERE """ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) Loader = PyMuPDFLoader set_llm_cache(InMemoryCache()) core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") rag_system_prompt_template = """\ You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. """ rag_message_list = [ {"role" : "system", "content" : rag_system_prompt_template}, ] rag_user_prompt_template = """\ Question: {question} Context: {context} """ chat_prompt = ChatPromptTemplate.from_messages([ ("system", rag_system_prompt_template), ("human", rag_user_prompt_template) ]) chat_model = ChatOpenAI(model="gpt-4o-mini") def process_file(file: AskFileResponse): import tempfile with tempfile.NamedTemporaryFile(mode="w", delete=False) as tempfile: with open(tempfile.name, "wb") as f: f.write(file.content) loader = Loader(tempfile.name) documents = loader.load() docs = text_splitter.split_documents(documents) for i, doc in enumerate(docs): doc.metadata["source"] = f"source_{i}" return docs ### On Chat Start (Session Start) Section ### @cl.on_chat_start async def on_chat_start(): """ SESSION SPECIFIC CODE HERE """ #file_path = "https://arxiv.org/pdf/2106.09685" #loader = Loader(file_path) #documents = loader.load() #docs = text_splitter.split_documents(documents) #for i, doc in enumerate(docs): #doc.metadata["source"] = f"source_{i}" files = None # Wait for the user to upload a file while files == None: files = await cl.AskFileMessage( content="Please upload a PDF file to begin!", accept=["application/pdf"], max_size_mb=20, timeout=180, ).send() file = files[0] msg = cl.Message( content=f"Processing `{file.name}`...", disable_human_feedback=True ) await msg.send() # load the file docs = process_file(file) # Create a unique cache for each user user_id = str(uuid.uuid4()) # Unique ID per user cache_path = f"./cache/user_{user_id}/" os.makedirs(cache_path, exist_ok=True) store = LocalFileStore(cache_path) cached_embedder = CacheBackedEmbeddings.from_bytes_store( core_embeddings, store, namespace=f"user_{user_id}" ) # Typical QDrant Vector Store Set-up collection_name = f"pdf_to_parse_{user_id}" client = QdrantClient(":memory:") client.create_collection( collection_name=collection_name, vectors_config=VectorParams(size=1536, distance=Distance.COSINE), ) vectorstore = QdrantVectorStore( client=client, collection_name=collection_name, embedding=cached_embedder) vectorstore.add_documents(docs) rv = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3}) # Let the user know that the system is ready # msg = cl.Message( # content=f"Welcome to the AI Legal Chatbot! Ask me anything about the AI policy", disable_human_feedback=True, author="Chat AI" # ) # await msg.send() message_history = ChatMessageHistory() memory = ConversationBufferMemory( memory_key="chat_history", output_key="answer", chat_memory=message_history, return_messages=True, ) # Create a chain that uses the Qdrant vector store retrieval_augmented_qa_chain = ConversationalRetrievalChain.from_llm( ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True), chain_type="stuff", retriever=rv, memory=memory, return_source_documents=True, ) msg.content = f"Processing `{file.name}` done. You can now ask questions!" await msg.update() # retrieval_augmented_qa_chain = ( # {"context": itemgetter("question") | retriever, "question": itemgetter("question")} # | RunnablePassthrough.assign(context=itemgetter("context")) # | chat_prompt | chat_model # ) cl.user_session.set("chain", retrieval_augmented_qa_chain) ### Rename Chains ### @cl.author_rename def rename(orig_author: str): """ RENAME CODE HERE """ user_id = cl.user_session.get("user_id") # Retrieve the user_id from the session if not user_id: # In case the user_id is not stored yet, generate one user_id = str(uuid.uuid4()) cl.user_session.set("user_id", user_id) # Append or modify the original author name with the user-specific ID new_author_name = f"{orig_author}_user_{user_id}" return new_author_name ### On Message Section ### @cl.on_message async def main(message: cl.Message): """ MESSAGE CODE HERE """ chain = cl.user_session.get("chain") # type: ConversationalRetrievalChain cb = cl.AsyncLangchainCallbackHandler() #res = await chain.acall(message.content, callbacks=[cb]) res = await chain.acall(message.content, callbacks=[cb]) answer = res["answer"] source_documents = res["source_documents"] # type: List[Document] text_elements = [] # type: List[cl.Text] if source_documents: for source_idx, source_doc in enumerate(source_documents): source_name = f"source_{source_idx}" # Create the text element referenced in the message text_elements.append( cl.Text(content=source_doc.page_content, name=source_name) ) source_names = [text_el.name for text_el in text_elements] if source_names: answer += f"\nSources: {', '.join(source_names)}" else: answer += "\nNo sources found" # Send the response to the user await cl.Message(content=answer, elements=text_elements, author="bot_for").send()