Spaces:
Paused
Paused
import os | |
import glob | |
import torch | |
import numpy as np | |
import imageio | |
import json | |
import torch.nn.functional as F | |
import cv2 | |
trans_t = lambda t : torch.Tensor([ | |
[1,0,0,0], | |
[0,1,0,0], | |
[0,0,1,t], | |
[0,0,0,1]]).float() | |
rot_phi = lambda phi : torch.Tensor([ | |
[1,0,0,0], | |
[0,np.cos(phi),-np.sin(phi),0], | |
[0,np.sin(phi), np.cos(phi),0], | |
[0,0,0,1]]).float() | |
rot_theta = lambda th : torch.Tensor([ | |
[np.cos(th),0,-np.sin(th),0], | |
[0,1,0,0], | |
[np.sin(th),0, np.cos(th),0], | |
[0,0,0,1]]).float() | |
def pose_spherical(theta, phi, radius): | |
c2w = trans_t(radius) | |
c2w = rot_phi(phi/180.*np.pi) @ c2w | |
c2w = rot_theta(theta/180.*np.pi) @ c2w | |
c2w = torch.Tensor(np.array([[-1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]])) @ c2w | |
c2w[:,[1,2]] *= -1 | |
return c2w | |
def load_nsvf_data(basedir): | |
pose_paths = sorted(glob.glob(os.path.join(basedir, 'pose', '*txt'))) | |
rgb_paths = sorted(glob.glob(os.path.join(basedir, 'rgb', '*png'))) | |
all_poses = [] | |
all_imgs = [] | |
i_split = [[], [], []] | |
for i, (pose_path, rgb_path) in enumerate(zip(pose_paths, rgb_paths)): | |
i_set = int(os.path.split(rgb_path)[-1][0]) | |
all_imgs.append((imageio.imread(rgb_path) / 255.).astype(np.float32)) | |
all_poses.append(np.loadtxt(pose_path).astype(np.float32)) | |
i_split[i_set].append(i) | |
if i_split[2] == []: | |
i_split[2] = i_split[1] | |
imgs = np.stack(all_imgs, 0) | |
poses = np.stack(all_poses, 0) | |
H, W = imgs[0].shape[:2] | |
with open(os.path.join(basedir, 'intrinsics.txt')) as f: | |
focal = float(f.readline().split()[0]) | |
R = np.sqrt((poses[...,:3,3]**2).sum(-1)).mean() | |
render_poses = torch.stack([pose_spherical(angle, -30.0, R) for angle in np.linspace(-180,180,200+1)[:-1]], 0) | |
return imgs, poses, render_poses, [H, W, focal], i_split | |