Spaces:
Paused
Paused
_base_ = '../seg_default.py' | |
basedir = './logs/nerf_unbounded' | |
data = dict( | |
dataset_type='llff', | |
spherify=True, | |
factor=4, | |
llffhold=8, | |
white_bkgd=True, | |
rand_bkgd=True, | |
unbounded_inward=True, | |
load2gpu_on_the_fly=True, | |
) | |
coarse_train = dict(N_iters=0) | |
fine_train = dict( | |
N_iters=800000, | |
N_rand=1024 * 4, | |
lrate_decay=80, | |
ray_sampler='flatten', | |
weight_nearclip=1.0, | |
weight_distortion=0.01, | |
pg_scale=[2000,4000,6000,8000,10000,12000,14000,16000], | |
tv_before=20000, | |
tv_dense_before=20000, | |
weight_tv_density=1e-6, | |
weight_tv_k0=1e-7, | |
) | |
alpha_init = 1e-4 | |
stepsize = 0.5 | |
fine_model_and_render = dict( | |
num_voxels=320**3, | |
num_voxels_base=160**3, | |
alpha_init=alpha_init, | |
stepsize=stepsize, | |
fast_color_thres=0.1, | |
# fast_color_thres={ | |
# '_delete_': True, | |
# 0 : alpha_init*stepsize/10, | |
# 1500: min(alpha_init, 1e-4)*stepsize/5, | |
# 2500: min(alpha_init, 1e-4)*stepsize/2, | |
# 3500: min(alpha_init, 1e-4)*stepsize/1.5, | |
# 4500: min(alpha_init, 1e-4)*stepsize, | |
# 5500: min(alpha_init, 1e-4), | |
# 6500: 1e-4, | |
# }, | |
world_bound_scale=1, | |
) | |