Spaces:
Paused
Paused
File size: 29,773 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
import re
import os
import copy
from threading import enumerate
import numpy as np
import torch
from dust3r.inference import inference, load_model
from dust3r.utils.image import load_images, rgb
from dust3r.utils.device import to_numpy
from dust3r.image_pairs import make_pairs
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from scipy.spatial.transform import Rotation
import matplotlib.pyplot as plt
import pandas as pd
def get_reconstructed_scene(model, device, image_size, filelist, schedule, niter, scenegraph_type, winsize, refid):
"""
from a list of images, run dust3r inference, global aligner.
"""
imgs = load_images(filelist, size=image_size)
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
# 图片两两组合
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
output = inference(pairs, model, device, batch_size=batch_size) # 将输入的图片两两成对输入dust3r模型
#关于output:view1、view2分别表示输入模型的两张图片,pred1、pred2分别表示两个分支的输出结果,pred包含pointmap和confidence两个结果
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
lr = 0.01
if mode == GlobalAlignerMode.PointCloudOptimizer:
try: # scene:PointCloudOptimizer
scene = global_aligner(output, device=device, mode=mode)
# ==========Golbal optimization章节,根据公式(5)梯度下降估算世界坐标系下的三维点和外参矩阵=============
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
except Exception as e:# 论文中的Golbal optimization章节,根据公式(5)梯度下降估算世界坐标系下的三维点和外参矩阵
print(e)
scene = global_aligner(output, device='cpu', mode=mode)
print('retrying with cpu')
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
# also return rgb, depth and confidence imgs
# depth is normalized with the max value for all images
# we apply the jet colormap on the confidence maps
rgbimg = scene.imgs
depths = to_numpy(scene.get_depthmaps()) # 深度信息D,即公式(1)上的D
confs = to_numpy([c for c in scene.im_conf])
cmap = plt.get_cmap('jet')
depths_max = max([d.max() for d in depths]) # 获取最大深度值
depths = [d/depths_max for d in depths] # 归一化
confs_max = max([d.max() for d in confs]) # 获取置信度最大值
confs = [cmap(d/confs_max) for d in confs] # 归一化
imgs = []
for i in range(len(rgbimg)):
imgs.append(rgbimg[i])
imgs.append(rgb(depths[i]))
imgs.append(rgb(confs[i]))
return scene, rgbimg
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def seg(predictor, rgbimgs, masks, target_ind):
print('SAM step...')
# return masks
fig, ax = plt.subplots(len(rgbimgs), 4, figsize=(20, 20))
for i, img in zip(range(len(rgbimgs)),rgbimgs):
predictor.set_image((img * 255).astype(np.uint8))
h,w,c = img.shape
input_point = np.array([
[int(w/2), int(h/2)],
[int(w/2), int(h/2)-30],
])
input_label = np.array([1,1])
m, scores, logits = predictor.predict( # 输入SAM,提示信息是中心的两个point提示
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
show_mask(m[0], ax[i][0], random_color=True) # 第一列即m[0]展示的是SAM以上面两个point为提示信息输出的分割结果
show_points(input_point, input_label, ax[i][0])
ax[i][1].imshow(img) # 第二列展示的是原图
ax[i][2].imshow(masks[i].detach().cpu().numpy()) # 第三列展示的是置信度大于阈值的像素点
masks[i] = masks[i].detach().cpu().numpy() & m[0]
ax[i][3].imshow(masks[i]) # 第四列是一、三列分割图的交集
masks[i] = m[0]
plt.savefig("masks.png")
return masks # 返回的是针对每张图片,SAM以上面两个point为提示信息输出的分割结果
def rgb_to_grayscale(img):
"""将RGB图像转换为灰度图。"""
return np.dot(img[..., :3], [0.2989, 0.5870, 0.1140])
def binarize_image(img, threshold=0):
grayscale = rgb_to_grayscale(img)
return (~(grayscale > threshold)).astype(np.uint8) * 255
# by guoyansong
'''
接受的输入是:data/数据集名称/scene,如data/nerf_llff_data(NVOS-all)/horns
'''
def run(img_dir):
dataset_name = img_dir.split('/')[-2]
scene_name = img_dir.split('/')[-1]
outdir = os.path.join("output", dataset_name, scene_name)
model_path = args.model_path
device = 'cuda'
print("=============================================")
print(torch.cuda.is_available())
# 1、===============================加载数据集==============================
from load_nvos import load_nvos_data_evaluate
target_ind, target_mask, all_imgfiles = load_nvos_data_evaluate(
basedir=img_dir)
# print(ref_ind, ref_pose.shape, target_ind, all_imgfiles, all_poses.shape)
# print(target_pose)
from SAM import SamPredictor
from SAM.build_sam import sam_model_registry
sam = sam_model_registry[args.sam_model](checkpoint=args.sam_checkpoint)
sam.to(device=device)
predictor = SamPredictor(sam)
model = load_model(model_path, device) # dust3R
# load_images can take a list of images or a directory
# 2、==============调用DUST3R和Global Alignment获取pointmaps====================
scene, imgs = get_reconstructed_scene( # 调用DUST3R
model=model, device=device,
image_size=512, filelist=all_imgfiles, schedule=schedule,
niter=niter, scenegraph_type="complete", winsize=1, refid=0,
)
poses = scene.get_im_poses() # cam to world 外参数矩阵的逆
intrinsics = scene.get_intrinsics()
pts3d = scene.get_pts3d()
confidence_masks = scene.get_masks()
# 3、===============================调用SAM获取2D masks==========================
# 这里返回的是针对每张图片,SAM以目标中心的两个point为提示信息输出的分割结果
masks = seg(predictor, imgs, confidence_masks, target_ind)
# 4、==============================基于2D masks获取3D masks=====================
pts3d_list = []
color_list = []
for i, mask in zip(range(len(masks)), masks):
# 将SAM分割的结果和三维点云融合,即去除背景只剩下目标物体的三维点
pts3d_list.append(pts3d[i][mask].detach().cpu().numpy())
# 将SAM分割的结果和原图融合,即去除背景,这里是为了取出原图中二维点像素值,给上面的三维点染色(pts3d_list和color_list的点是一一对应的)
color_list.append(imgs[i][mask])
# 将所有的三维点连接在一起,即全部绘制出来表示目标物体的三维点云(即论文中的公式(5)经过梯度下降计算出的世界坐标系下的点)
points_3D = np.concatenate(pts3d_list).reshape(-1, 3)
colors = np.concatenate(color_list).reshape(-1, 3)
# 将点云数据转换为齐次坐标形式 (N, 4),最后一列为1
points_3D = np.hstack((points_3D, np.ones((len(points_3D), 1))))
# 实际中,P 应根据你的相机参数来设置
# P = np.eye(4) # 假设为单位矩阵,即无旋转无平移
# P = poses[target_ind].cpu().detach().numpy()
# P是从相机到世界的变换矩阵,我们需要它的逆来从世界变换到相机坐标系
P = np.linalg.inv(poses[target_ind].cpu().detach().numpy())
print(f'Word 2 Camera:{P}')
# P = np.eye(4)
# P[:3,:4] = target_pose[:,:4]
# 变换点云到相机坐标系
points_camera_coord = np.dot(points_3D, P.T)
# points_camera_coord = points_3D
# 假设的投影矩阵,这里只是一个简化的示例
# 真实情况下,投影矩阵取决于相机的内参等因素
# projection_matrix = np.array([[1, 0, 0, 0],
# [0, 1, 0, 0],
# [0, 0, 1, 0]])
projection_matrix = intrinsics[target_ind].cpu().detach().numpy()
print(f'intrinsics:{projection_matrix}')
# 应用内参矩阵由相机坐标系转成像素坐标系
points_projected = np.dot(points_camera_coord[:, :3], projection_matrix.T)
# 从齐次坐标转换为笛卡尔坐标(欧式坐标)
points_2D = points_projected[:, :2] / points_projected[:, 2, np.newaxis]
# 创建一个空的图像(初始化为白色背景)
image = np.ones(imgs[0].shape)
H, W, _ = image.shape
# 根据需要调整2D投影坐标的尺度和位置,以适应图像的尺寸
# 这里简化处理,直接按比例缩放并居中
# scale = min(W, H) / max(points_2D.max() - points_2D.min(), 1)
# # offset = ((W - (points_2D[:, 0].max() - points_2D[:, 0].min()) * scale) / 2,
# # (H - (points_2D[:, 1].max() - points_2D[:, 1].min()) * scale) / 2)
# points_2D_scaled = points_2D * scale + offset
# 计算2D投影坐标的尺度和位置,以适应图像的尺寸
# x_min, y_min = points_2D.min(axis=0)
# x_max, y_max = points_2D.max(axis=0)
# 保持横纵比不变的缩放
# scale = min(W / (x_max - x_min), H / (y_max - y_min))
# 缩放后的坐标
# points_2D_scaled = (points_2D - [x_min, y_min]) * scale
points_2D_scaled = points_2D
# 在图像上绘制点云
for point, color in zip(points_2D_scaled.astype(int), colors):
x, y = point
# 检查坐标是否在图像范围内
if 0 <= x < W and 0 <= y < H:
image[y, x] = color # 设置像素颜色
import cv2
image = cv2.resize(image, (target_mask.shape[1], target_mask.shape[0]))
binary_image = binarize_image(image, threshold=args.thr)
# 转换为Pillow图像对象,确保数据类型正确
from PIL import Image
pil_image = Image.fromarray(binary_image, 'L') # 'L'代表灰度模式
# 保存图像
os.makedirs(outdir, exist_ok=True)
pil_image.save(os.path.join(outdir, 'point_cloud_projection_mask.png'))
plt.imsave(os.path.join(outdir, 'point_cloud_projection.png'), image)
# 5、======================================计算IoU和Acc==================================
import evaluate
"""
img_dir: data/nerf_llff_data(NVOS-all)/horns
out_dir: output/horns/nerf_llff_data(NVOS-all)/horns
mask_path:output/nerf_llff_data(NVOS-all)/horns/point_cloud_projection_mask.png
gt_path: data/nerf_llff_data(NVOS-all)/masks/horns_center/DJI_20200223_163024_597_mask.png
"""
mask_path = os.path.join(outdir, "point_cloud_projection_mask.png")
gt_dir = os.path.join("data", dataset_name, "masks", scene_name)
gt_path = ""
for name in os.listdir(gt_dir):
if "_mask" in name:
gt_path = os.path.join(gt_dir, name)
assert gt_path != "", os.path.join(outdir, "point_cloud_projection_mask.png") + "路径下没有mask图片"
iou, acc = evaluate.get_eval(mask_path, gt_path)
append_to_excel(os.path.join("output", dataset_name, 'iouAndAcc.xlsx'), scene_name, iou, acc)
# gys:读取mask文件夹下的所有ground truth masks,不再需要经过SAM生成mask
def get_gt_masks(folder_path):
from dust3r.utils.image import load_images, rgb
imgs_mask = load_images(folder_path, 512)
# 定义保存布尔mask的列表
bool_masks = []
for mask in imgs_mask:
image_array = mask['img'].squeeze(0).numpy()
# 将RGB图像转换为灰度图像
# 使用简单的加权方法转换为灰度: Y = 0.299*R + 0.587*G + 0.114*B
gray_image = 0.299 * image_array[0] + 0.587 * image_array[1] + 0.114 * image_array[2]
# 将灰度图像转换为布尔数组(前景为True,背景为False)
bool_array = gray_image > 0
# 将布尔数组添加到列表中
bool_masks.append(bool_array)
# 输出布尔mask的数量
print(f"Total number of mask images processed: {len(bool_masks)}")
return bool_masks
# by guoyansong
'''
接受的输入路径是:data/llff(sanerf-hq)/cecread
不再经过人工提示和SAM生成mask,直接基于每个图片的gt.mask获取3D mask
'''
def run_llff_SANeRF_HQ(img_dir):
dataset_name = img_dir.split('/')[-2]
scene_name = img_dir.split('/')[-1]
outdir = os.path.join("output", dataset_name, scene_name)
model_path = args.model_path
device = 'cuda'
print("=============================================")
print(torch.cuda.is_available())
# 1、===============================加载数据集==============================
from load_nvos import load_nvos_data_evaluate
target_ind, target_mask, all_imgfiles = load_nvos_data_evaluate(
basedir=img_dir)
# print(ref_ind, ref_pose.shape, target_ind, all_imgfiles, all_poses.shape)
# print(target_pose)
# from SAM import SamPredictor
# from SAM.build_sam import sam_model_registry
# sam = sam_model_registry[args.sam_model](checkpoint=args.sam_checkpoint)
# sam.to(device=device)
# predictor = SamPredictor(sam)
model = load_model(model_path, device) # dust3R
# load_images can take a list of images or a directory
# 2、==============调用DUST3R和Global Alignment获取pointmaps====================
scene, imgs = get_reconstructed_scene( # 调用DUST3R
model=model, device=device,
image_size=512, filelist=all_imgfiles, schedule=schedule,
niter=niter, scenegraph_type="complete", winsize=1, refid=0,
)
poses = scene.get_im_poses() # cam to world 外参数矩阵的逆
intrinsics = scene.get_intrinsics()
pts3d = scene.get_pts3d()
confidence_masks = scene.get_masks()
# 3、===============================调用SAM获取2D masks==========================
# 这里返回的是针对每张图片,SAM以目标中心的两个point为提示信息输出的分割结果
# TODO 直接读取mask文件夹下的gt. masks,不再需要SAM输出mask
# masks = seg(predictor, imgs, confidence_masks, target_ind)
gt_masks_dir = os.path.join("data", dataset_name, scene_name, "gt_masks")
masks = get_gt_masks(gt_masks_dir)
# 4、==============================基于2D masks获取3D masks=====================
pts3d_list = []
color_list = []
for i, mask in zip(range(len(masks)), masks):
# 将SAM分割的结果和三维点云融合,即去除背景只剩下目标物体的三维点
# pts3d_list.append(pts3d[i][mask].detach().cpu().numpy())
pts3d_list.append(pts3d[i].detach().cpu().numpy())
# # 将SAM分割的结果和原图融合,即去除背景,这里是为了取出原图中二维点像素值,给上面的三维点染色(pts3d_list和color_list的点是一一对应的)
# color_list.append(imgs[i][mask])
color_list.append(imgs[i])
# 将所有的三维点连接在一起,即全部绘制出来表示目标物体的三维点云(即论文中的公式(5)经过梯度下降计算出的世界坐标系下的点)
points_3D = np.concatenate(pts3d_list).reshape(-1, 3)
colors = np.concatenate(color_list).reshape(-1, 3)
# 将点云数据转换为齐次坐标形式 (N, 4),最后一列为1
points_3D = np.hstack((points_3D, np.ones((len(points_3D), 1))))
# 实际中,P 应根据你的相机参数来设置
# P = np.eye(4) # 假设为单位矩阵,即无旋转无平移
# P = poses[target_ind].cpu().detach().numpy()
# P是从相机到世界的变换矩阵,我们需要它的逆来从世界变换到相机坐标系
P = np.linalg.inv(poses[target_ind].cpu().detach().numpy())
print(f'Word 2 Camera:{P}')
# P = np.eye(4)
# P[:3,:4] = target_pose[:,:4]
# 变换点云到相机坐标系
points_camera_coord = np.dot(points_3D, P.T)
# points_camera_coord = points_3D
# 假设的投影矩阵,这里只是一个简化的示例
# 真实情况下,投影矩阵取决于相机的内参等因素
# projection_matrix = np.array([[1, 0, 0, 0],
# [0, 1, 0, 0],
# [0, 0, 1, 0]])
projection_matrix = intrinsics[target_ind].cpu().detach().numpy()
print(f'intrinsics:{projection_matrix}')
# 应用内参矩阵由相机坐标系转成像素坐标系
points_projected = np.dot(points_camera_coord[:, :3], projection_matrix.T)
# 从齐次坐标转换为笛卡尔坐标(欧式坐标)
points_2D = points_projected[:, :2] / points_projected[:, 2, np.newaxis]
# 创建一个空的图像(初始化为白色背景)
image = np.ones(imgs[0].shape)
H, W, _ = image.shape
# 根据需要调整2D投影坐标的尺度和位置,以适应图像的尺寸
# 这里简化处理,直接按比例缩放并居中
# scale = min(W, H) / max(points_2D.max() - points_2D.min(), 1)
# # offset = ((W - (points_2D[:, 0].max() - points_2D[:, 0].min()) * scale) / 2,
# # (H - (points_2D[:, 1].max() - points_2D[:, 1].min()) * scale) / 2)
# points_2D_scaled = points_2D * scale + offset
# 计算2D投影坐标的尺度和位置,以适应图像的尺寸
# x_min, y_min = points_2D.min(axis=0)
# x_max, y_max = points_2D.max(axis=0)
# 保持横纵比不变的缩放
# scale = min(W / (x_max - x_min), H / (y_max - y_min))
# 缩放后的坐标
# points_2D_scaled = (points_2D - [x_min, y_min]) * scale
points_2D_scaled = points_2D
# 在图像上绘制点云
for point, color in zip(points_2D_scaled.astype(int), colors):
x, y = point
# 检查坐标是否在图像范围内
if 0 <= x < W and 0 <= y < H:
image[y, x] = color # 设置像素颜色
import cv2
image = cv2.resize(image, (target_mask.shape[1], target_mask.shape[0]))
binary_image = binarize_image(image, threshold=args.thr)
# 转换为Pillow图像对象,确保数据类型正确
from PIL import Image
pil_image = Image.fromarray(binary_image, 'L') # 'L'代表灰度模式
# 保存图像
os.makedirs(outdir, exist_ok=True)
pil_image.save(os.path.join(outdir, 'point_cloud_projection_mask.png'))
plt.imsave(os.path.join(outdir, 'point_cloud_projection.png'), image)
# 5、======================================计算IoU和Acc==================================
import evaluate
"""
img_dir: data/nerf_llff_data(NVOS-all)/horns
out_dir: output/horns/nerf_llff_data(NVOS-all)/horns
mask_path:output/nerf_llff_data(NVOS-all)/horns/point_cloud_projection_mask.png
gt_path: data/nerf_llff_data(NVOS-all)/masks/horns_center/DJI_20200223_163024_597_mask.png
"""
mask_path = os.path.join(outdir, "point_cloud_projection_mask.png")
gt_dir = os.path.join("data", dataset_name, "masks", scene_name)
gt_path = ""
for name in os.listdir(gt_dir):
if "_mask" in name:
gt_path = os.path.join(gt_dir, name)
assert gt_path != "", os.path.join(outdir, "point_cloud_projection_mask.png") + "路径下没有mask图片"
iou, acc = evaluate.get_eval(mask_path, gt_path)
append_to_excel(os.path.join("output", dataset_name, 'iouAndAcc.xlsx'), scene_name, iou, acc)
# 将所有scene的iou和acc结果写入Excel,便于求mIoU和mAcc
def append_to_excel(file_path, scene, mIoU, mAcc):
# 创建一个 DataFrame 保存新的数据
data = {
'scene': [scene],
'mIoU': [f"{mIoU:.12f}"],
'mAcc': [f"{mAcc:.12f}"]
}
new_df = pd.DataFrame(data)
# 如果文件不存在,创建新的文件并写入数据
if not os.path.exists(file_path):
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
new_df.to_excel(writer, index=False)
else:
# 如果文件存在,读取文件并追加新数据
existing_df = pd.read_excel(file_path)
updated_df = pd.concat([existing_df, new_df], ignore_index=True)
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
updated_df.to_excel(writer, index=False)
# 将所有scene的iou和acc结果写入Excel,便于求mIoU和mAcc
def append_to_excel(file_path, scene, mIoU, mAcc):
# 创建一个 DataFrame 保存新的数据
data = {
'scene': [scene],
'mIoU': [f"{mIoU:.12f}"],
'mAcc': [f"{mAcc:.12f}"]
}
new_df = pd.DataFrame(data)
# 如果文件不存在,创建新的文件并写入数据
if not os.path.exists(file_path):
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
new_df.to_excel(writer, index=False)
else:
# 如果文件存在,读取文件并追加新数据
existing_df = pd.read_excel(file_path)
updated_df = pd.concat([existing_df, new_df], ignore_index=True)
with pd.ExcelWriter(file_path, engine='openpyxl') as writer:
updated_df.to_excel(writer, index=False)
batch_size = 1
schedule = 'cosine'
lr = 0.01
niter = 50 #global alignment中的迭代次数;初始值是300,本机内存爆炸,这里改小到50
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--img-dir', type=str, default="data/nerf_llff_data(NVOS-all)")
parser.add_argument('--model-path', type=str, default="checkpoints/DUSt3R_ViTLarge_BaseDecoder_512_dpt.pth")
parser.add_argument('--sam-model', type=str, default="vit_b")
parser.add_argument('--sam-checkpoint', type=str, default="checkpoints/sam_vit_b_01ec64.pth")
parser.add_argument('--outdir', type=str, default="output/eval/horns")
parser.add_argument('--thr', type=float, default=0.6) # 0.6
args = parser.parse_args()
#### 测试llff(sanerf-hq)数据集的cecread场景
# run_llff_SANeRF_HQ("data/nerf_llff_data(NVOS-all)/trex")
for f in os.listdir(args.img_dir):
scene_path = os.path.join(args.img_dir, f).replace('\\', '/')
if(os.path.isdir(scene_path) and f != "horns" and f != "masks" and f!="reference_image" and f != "scribbles"):
run_llff_SANeRF_HQ(scene_path)
# import evaluate
#
# """
# img_dir: data/nerf_llff_data(NVOS-all)/horns
# out_dir: output/horns/nerf_llff_data(NVOS-all)/horns
# mask_path:output/nerf_llff_data(NVOS-all)/horns/point_cloud_projection_mask.png
# gt_path: data/nerf_llff_data(NVOS-all)/masks/horns_center/DJI_20200223_163024_597_mask.png
# """
# mask_path = os.path.join(out_dir, "point_cloud_projection_mask.png")
# gt_dir = os.path.join("data", dataset_name, "masks", scene_name)
# gt_path = ""
# for name in os.listdir(gt_dir):
# if "_mask" in name:
# gt_path = os.path.join(gt_dir, name)
#
# assert gt_path != "", os.path.join(out_dir, "point_cloud_projection_mask.png") + "路径下没有mask图片"
# evaluate.get_eval(mask_path, gt_path)
# model_path = args.model_path
# outdir = args.outdir
# device = 'cuda'
# print("=============================================")
# print(torch.cuda.is_available())
# from load_nvos import load_nvos_data
# ref_ind, ref_pose, target_ind, target_pose, target_mask, all_imgfiles, all_poses = load_nvos_data(basedir=args.img_dir)
# # print(ref_ind, ref_pose.shape, target_ind, all_imgfiles, all_poses.shape)
# # print(target_pose)
#
# from SAM import SamPredictor
# from SAM.build_sam import sam_model_registry
# sam = sam_model_registry[args.sam_model](checkpoint=args.sam_checkpoint)
# sam.to(device=device)
# predictor = SamPredictor(sam)
#
# batch_size = 1
# schedule = 'cosine'
# lr = 0.01
# niter = 50 #300,本机内存爆炸,这里改小到50
#
# model = load_model(model_path, device) # dust3R
# # load_images can take a list of images or a directory
# scene, imgs = get_reconstructed_scene( # 调用DUST3R
# model=model, device=device,
# image_size=512, filelist=all_imgfiles, schedule=schedule,
# niter=niter, scenegraph_type="complete", winsize=1, refid=0,
# )
#
# poses = scene.get_im_poses() # cam to world 外参数矩阵的逆
# intrinsics = scene.get_intrinsics()
# pts3d = scene.get_pts3d()
# confidence_masks = scene.get_masks()
#
# # 这里返回的是针对每张图片,SAM以目标中心的两个point为提示信息输出的分割结果
# masks = seg(predictor, imgs, confidence_masks, target_ind)
# pts3d_list = []
# color_list = []
# for i, mask in zip(range(len(masks)),masks):
# # 将SAM分割的结果和三维点云融合,即去除背景只剩下目标物体的三维点
# pts3d_list.append(pts3d[i][mask].detach().cpu().numpy())
# # 将SAM分割的结果和原图融合,即去除背景,这里是为了取出原图中二维点像素值,给上面的三维点染色(pts3d_list和color_list的点是一一对应的)
# color_list.append(imgs[i][mask])
# # 将所有的三维点连接在一起,即全部绘制出来表示目标物体的三维点云(即论文中的公式(5)经过梯度下降计算出的世界坐标系下的点)
# points_3D = np.concatenate(pts3d_list).reshape(-1,3)
# colors = np.concatenate(color_list).reshape(-1,3)
#
# # 将点云数据转换为齐次坐标形式 (N, 4),最后一列为1
# points_3D = np.hstack((points_3D, np.ones((len(points_3D), 1))))
# # 实际中,P 应根据你的相机参数来设置
# # P = np.eye(4) # 假设为单位矩阵,即无旋转无平移
# # P = poses[target_ind].cpu().detach().numpy()
# # P是从相机到世界的变换矩阵,我们需要它的逆来从世界变换到相机坐标系
# P = np.linalg.inv(poses[target_ind].cpu().detach().numpy())
# print(f'Word 2 Camera:{P}')
# # P = np.eye(4)
# # P[:3,:4] = target_pose[:,:4]
#
# # 变换点云到相机坐标系
# points_camera_coord = np.dot(points_3D, P.T)
# # points_camera_coord = points_3D
#
# # 假设的投影矩阵,这里只是一个简化的示例
# # 真实情况下,投影矩阵取决于相机的内参等因素
# # projection_matrix = np.array([[1, 0, 0, 0],
# # [0, 1, 0, 0],
# # [0, 0, 1, 0]])
# projection_matrix = intrinsics[target_ind].cpu().detach().numpy()
# print(f'intrinsics:{projection_matrix}')
#
# # 应用内参矩阵由相机坐标系转成像素坐标系
# points_projected = np.dot(points_camera_coord[:,:3], projection_matrix.T)
#
# # 从齐次坐标转换为笛卡尔坐标(欧式坐标)
# points_2D = points_projected[:, :2] / points_projected[:, 2, np.newaxis]
#
#
# # 创建一个空的图像(初始化为白色背景)
# image = np.ones(imgs[0].shape)
# H,W,_ = image.shape
# # 根据需要调整2D投影坐标的尺度和位置,以适应图像的尺寸
# # 这里简化处理,直接按比例缩放并居中
# # scale = min(W, H) / max(points_2D.max() - points_2D.min(), 1)
# # # offset = ((W - (points_2D[:, 0].max() - points_2D[:, 0].min()) * scale) / 2,
# # # (H - (points_2D[:, 1].max() - points_2D[:, 1].min()) * scale) / 2)
# # points_2D_scaled = points_2D * scale + offset
#
# # 计算2D投影坐标的尺度和位置,以适应图像的尺寸
# #x_min, y_min = points_2D.min(axis=0)
# #x_max, y_max = points_2D.max(axis=0)
# # 保持横纵比不变的缩放
# #scale = min(W / (x_max - x_min), H / (y_max - y_min))
#
# # 缩放后的坐标
# #points_2D_scaled = (points_2D - [x_min, y_min]) * scale
# points_2D_scaled = points_2D
#
# # 在图像上绘制点云
# for point, color in zip(points_2D_scaled.astype(int), colors):
# x, y = point
# # 检查坐标是否在图像范围内
# if 0 <= x < W and 0 <= y < H:
# image[y, x] = color # 设置像素颜色
#
# import cv2
# image = cv2.resize(image, (target_mask.shape[1],target_mask.shape[0]))
# binary_image = binarize_image(image, threshold=args.thr)
# # 转换为Pillow图像对象,确保数据类型正确
# from PIL import Image
# pil_image = Image.fromarray(binary_image, 'L') # 'L'代表灰度模式
#
# # 保存图像
# os.makedirs(args.outdir, exist_ok=True)
# pil_image.save(os.path.join(args.outdir,'point_cloud_projection_mask.png'))
# plt.imsave(os.path.join(args.outdir,'point_cloud_projection.png'), image)
|