File size: 5,088 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# A dataset base class that you can easily resize and combine.
# --------------------------------------------------------
import numpy as np
from dust3r.datasets.base.batched_sampler import BatchedRandomSampler


class EasyDataset:
    """ a dataset that you can easily resize and combine.
    Examples:
    ---------
        2 * dataset ==> duplicate each element 2x

        10 @ dataset ==> set the size to 10 (random sampling, duplicates if necessary)

        dataset1 + dataset2 ==> concatenate datasets
    """

    def __add__(self, other):
        return CatDataset([self, other])

    def __rmul__(self, factor):
        return MulDataset(factor, self)

    def __rmatmul__(self, factor):
        return ResizedDataset(factor, self)

    def set_epoch(self, epoch):
        pass  # nothing to do by default

    def make_sampler(self, batch_size, shuffle=True, world_size=1, rank=0, drop_last=True):
        if not (shuffle):
            raise NotImplementedError()  # cannot deal yet
        num_of_aspect_ratios = len(self._resolutions)
        return BatchedRandomSampler(self, batch_size, num_of_aspect_ratios, world_size=world_size, rank=rank, drop_last=drop_last)


class MulDataset (EasyDataset):
    """ Artifically augmenting the size of a dataset.
    """
    multiplicator: int

    def __init__(self, multiplicator, dataset):
        assert isinstance(multiplicator, int) and multiplicator > 0
        self.multiplicator = multiplicator
        self.dataset = dataset

    def __len__(self):
        return self.multiplicator * len(self.dataset)

    def __repr__(self):
        return f'{self.multiplicator}*{repr(self.dataset)}'

    def __getitem__(self, idx):
        if isinstance(idx, tuple):
            idx, other = idx
            return self.dataset[idx // self.multiplicator, other]
        else:
            return self.dataset[idx // self.multiplicator]

    @property
    def _resolutions(self):
        return self.dataset._resolutions


class ResizedDataset (EasyDataset):
    """ Artifically changing the size of a dataset.
    """
    new_size: int

    def __init__(self, new_size, dataset):
        assert isinstance(new_size, int) and new_size > 0
        self.new_size = new_size
        self.dataset = dataset

    def __len__(self):
        return self.new_size

    def __repr__(self):
        size_str = str(self.new_size)
        for i in range((len(size_str)-1) // 3):
            sep = -4*i-3
            size_str = size_str[:sep] + '_' + size_str[sep:]
        return f'{size_str} @ {repr(self.dataset)}'

    def set_epoch(self, epoch):
        # this random shuffle only depends on the epoch
        rng = np.random.default_rng(seed=epoch+777)

        # shuffle all indices
        perm = rng.permutation(len(self.dataset))

        # rotary extension until target size is met
        shuffled_idxs = np.concatenate([perm] * (1 + (len(self)-1) // len(self.dataset)))
        self._idxs_mapping = shuffled_idxs[:self.new_size]

        assert len(self._idxs_mapping) == self.new_size

    def __getitem__(self, idx):
        assert hasattr(self, '_idxs_mapping'), 'You need to call dataset.set_epoch() to use ResizedDataset.__getitem__()'
        if isinstance(idx, tuple):
            idx, other = idx
            return self.dataset[self._idxs_mapping[idx], other]
        else:
            return self.dataset[self._idxs_mapping[idx]]

    @property
    def _resolutions(self):
        return self.dataset._resolutions


class CatDataset (EasyDataset):
    """ Concatenation of several datasets 
    """

    def __init__(self, datasets):
        for dataset in datasets:
            assert isinstance(dataset, EasyDataset)
        self.datasets = datasets
        self._cum_sizes = np.cumsum([len(dataset) for dataset in datasets])

    def __len__(self):
        return self._cum_sizes[-1]

    def __repr__(self):
        # remove uselessly long transform
        return ' + '.join(repr(dataset).replace(',transform=Compose( ToTensor() Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)))', '') for dataset in self.datasets)

    def set_epoch(self, epoch):
        for dataset in self.datasets:
            dataset.set_epoch(epoch)

    def __getitem__(self, idx):
        other = None
        if isinstance(idx, tuple):
            idx, other = idx

        if not (0 <= idx < len(self)):
            raise IndexError()

        db_idx = np.searchsorted(self._cum_sizes, idx, 'right')
        dataset = self.datasets[db_idx]
        new_idx = idx - (self._cum_sizes[db_idx - 1] if db_idx > 0 else 0)

        if other is not None:
            new_idx = (new_idx, other)
        return dataset[new_idx]

    @property
    def _resolutions(self):
        resolutions = self.datasets[0]._resolutions
        for dataset in self.datasets[1:]:
            assert tuple(dataset._resolutions) == tuple(resolutions)
        return resolutions