Spaces:
Paused
Paused
File size: 6,535 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
'''
Self prompting strategy
INPUT:
predictor: the initialized sam predictor :
rendered_mask_score: - : H*W*1
num_prompt: -
index_matrix: the matrix contains the 3D index of the rendered view : H*W*3
OUTPUT: a list of prompts
'''
import os
import torch
import math
import numpy as np
to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)
@torch.no_grad()
def mask_to_prompt(predictor, rendered_mask_score, index_matrix, num_prompts = 3):
'''main function for self prompting'''
h, w, _ = rendered_mask_score.shape
tmp = rendered_mask_score.view(-1)
print("tmp min:", tmp.min(), "tmp max:", tmp.max())
rand = torch.ones_like(tmp)
topk_v, topk_p = torch.topk(tmp*rand, k = 1)[0].cpu(), torch.topk(tmp*rand, k = 1)[1].cpu()
if topk_v <= 0:
print("No prompt is available")
return np.zeros((0,2)), np.ones((0))
prompt_points = []
prompt_points.append([topk_p[0] % w, topk_p[0] // w])
print((topk_p[0] % w).item(), (topk_p[0] // w).item(), h, w)
tmp_mask = rendered_mask_score.clone().detach()
area = to8b(tmp_mask.cpu().numpy()).sum() / 255
r = np.sqrt(area / math.pi)
masked_r = max(int(r) // 2, 2)
# masked_r = max(int(r) // 3, 2)
pre_tmp_mask_score = None
for _ in range(num_prompts - 1):
# mask out a region around the last prompt point
input_label = np.ones(len(prompt_points))
previous_masks, previous_scores, previous_logits = predictor.predict(
point_coords=np.array(prompt_points),
point_labels=input_label,
multimask_output=False,
)
l = 0 if prompt_points[-1][0]-masked_r <= 0 else prompt_points[-1][0]-masked_r
r = w-1 if prompt_points[-1][0]+masked_r >= w-1 else prompt_points[-1][0]+masked_r
t = 0 if prompt_points[-1][1]-masked_r <= 0 else prompt_points[-1][1]-masked_r
b = h-1 if prompt_points[-1][1]+masked_r >= h-1 else prompt_points[-1][1]+masked_r
tmp_mask[t:b+1, l:r+1, :] = -1e5
# bool: H W
previous_mask_tensor = torch.tensor(previous_masks[0])
previous_mask_tensor = previous_mask_tensor.unsqueeze(0).unsqueeze(0).float()
previous_mask_tensor = torch.nn.functional.max_pool2d(previous_mask_tensor, 25, stride = 1, padding = 12)
previous_mask_tensor = previous_mask_tensor.squeeze(0).permute([1,2,0])
# tmp_mask[previous_mask_tensor > 0] = -1e5
previous_max_score = torch.max(rendered_mask_score[previous_mask_tensor > 0])
previous_point_index = torch.zeros_like(index_matrix)
previous_point_index[:,:,0] = prompt_points[-1][1] / h
previous_point_index[:,:,1] = prompt_points[-1][0] / w
previous_point_index[:,:,2] = index_matrix[int(prompt_points[-1][1]), int(prompt_points[-1][0]), 2]
distance_matrix = torch.sqrt(((index_matrix - previous_point_index)**2).sum(-1))
distance_matrix = (distance_matrix.unsqueeze(-1) - distance_matrix.min()) / (distance_matrix.max() - distance_matrix.min())
cur_tmp_mask = tmp_mask - distance_matrix * max(previous_max_score, 0)
if pre_tmp_mask_score is None:
pre_tmp_mask_score = cur_tmp_mask
else:
pre_tmp_mask_score[pre_tmp_mask_score < cur_tmp_mask] = cur_tmp_mask[pre_tmp_mask_score < cur_tmp_mask]
pre_tmp_mask_score[tmp_mask == -1e5] = -1e5
tmp_val_point = pre_tmp_mask_score.view(-1).max(dim = 0)
if tmp_val_point[0] <= 0:
print("There are", len(prompt_points), "prompts")
break
prompt_points.append([int(tmp_val_point[1].cpu() % w), int(tmp_val_point[1].cpu() // w)])
prompt_points = np.array(prompt_points)
input_label = np.ones(len(prompt_points))
return prompt_points, input_label
from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2
import groundingdino.datasets.transforms as T
from torchvision.ops import box_convert
from PIL import Image
def image_transform(image) -> torch.Tensor:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_transformed, _ = transform(image, None)
return image_transformed
def grounding_dino_prompt(image, text):
image_tensor = image_transform(Image.fromarray(image))
model_root = './dependencies/GroundingDINO'
model = load_model(os.path.join(model_root, "groundingdino/config/GroundingDINO_SwinT_OGC.py"), os.path.join(model_root, "weights/groundingdino_swint_ogc.pth"))
BOX_TRESHOLD = 0.35
TEXT_TRESHOLD = 0.25
boxes, logits, phrases = predict(
model=model,
image=image_tensor,
caption=text,
box_threshold=BOX_TRESHOLD,
text_threshold=TEXT_TRESHOLD
)
h, w, _ = image.shape
print("boxes device", boxes.device)
boxes = boxes * torch.Tensor([w, h, w, h]).to(boxes.device)
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
print(xyxy)
return xyxy
'''
# new prompt strategy: bbox based
# cannot be applied to 360
try:
prompt = seg_m_for_prompt[:,:,no]
prompt = prompt > 0
box_prompt = masks_to_boxes(prompt.unsqueeze(0))
width = box_prompt[0,2] - box_prompt[0,0]
height = box_prompt[0,3] - box_prompt[0,1]
box_prompt[0,0] -= 0.05*width
box_prompt[0,2] += 0.05*width
box_prompt[0,1] -= 0.05*height
box_prompt[0,3] += 0.05*height
# print(box_prompt)
transformed_boxes = predictor.transform.apply_boxes_torch(box_prompt, image.shape[:2])
masks, _, _ = predictor.predict_torch(
point_coords=None,
point_labels=None,
boxes=transformed_boxes,
multimask_output=False,
)
masks = masks.float()
except:
continue
'''
'''
# mask based
H,W,_ = prompt.shape
target_size = RLS.get_preprocess_shape(H,W, 256)
prompt = torch.nn.functional.interpolate(torch.tensor(prompt).float().unsqueeze(0).permute([0,3,1,2]), target_size, mode = 'bilinear')
h,w = prompt.shape[-2:]
padh = 256 - h
padw = 256 - w
prompt = F.pad(prompt, (0, padw, 0, padh))
prompt = (prompt / 255) * 40 - 20
print(prompt.shape)
prompt = prompt.squeeze(1).cpu().numpy()
masks, scores, logits = predictor.predict(
point_coords=None,
point_labels=None,
mask_input=prompt,
multimask_output=False,
)
''' |