File size: 6,535 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
'''
    Self prompting strategy
    
    INPUT: 
        predictor: the initialized sam predictor :
        rendered_mask_score: - : H*W*1
        num_prompt: -  
        index_matrix: the matrix contains the 3D index of the rendered view : H*W*3
    OUTPUT: a list of prompts
'''
import os
import torch
import math
import numpy as np

to8b = lambda x : (255*np.clip(x,0,1)).astype(np.uint8)

@torch.no_grad()
def mask_to_prompt(predictor, rendered_mask_score, index_matrix, num_prompts = 3):
    '''main function for self prompting'''
    h, w, _ = rendered_mask_score.shape
    tmp = rendered_mask_score.view(-1)
    print("tmp min:", tmp.min(), "tmp max:", tmp.max())
    rand = torch.ones_like(tmp)
    topk_v, topk_p = torch.topk(tmp*rand, k = 1)[0].cpu(), torch.topk(tmp*rand, k = 1)[1].cpu()

    if topk_v <= 0:
        print("No prompt is available")
        return np.zeros((0,2)), np.ones((0))

    prompt_points = []
    prompt_points.append([topk_p[0] % w, topk_p[0] // w])

    print((topk_p[0] % w).item(), (topk_p[0] // w).item(), h, w)

    tmp_mask = rendered_mask_score.clone().detach()

    area = to8b(tmp_mask.cpu().numpy()).sum() / 255
    r = np.sqrt(area / math.pi)
    masked_r = max(int(r) // 2, 2)
    # masked_r = max(int(r) // 3, 2)

    pre_tmp_mask_score = None
    for _ in range(num_prompts - 1):
        # mask out a region around the last prompt point
        input_label = np.ones(len(prompt_points))
        previous_masks, previous_scores, previous_logits = predictor.predict(
            point_coords=np.array(prompt_points),
            point_labels=input_label,
            multimask_output=False,
        )

        l = 0 if prompt_points[-1][0]-masked_r <= 0 else prompt_points[-1][0]-masked_r
        r = w-1 if prompt_points[-1][0]+masked_r >= w-1 else prompt_points[-1][0]+masked_r

        t = 0 if prompt_points[-1][1]-masked_r <= 0 else prompt_points[-1][1]-masked_r
        b = h-1 if prompt_points[-1][1]+masked_r >= h-1 else prompt_points[-1][1]+masked_r
        tmp_mask[t:b+1, l:r+1, :] = -1e5

        # bool: H W
        previous_mask_tensor = torch.tensor(previous_masks[0])
        previous_mask_tensor = previous_mask_tensor.unsqueeze(0).unsqueeze(0).float()
        previous_mask_tensor = torch.nn.functional.max_pool2d(previous_mask_tensor, 25, stride = 1, padding = 12)
        previous_mask_tensor = previous_mask_tensor.squeeze(0).permute([1,2,0])
#         tmp_mask[previous_mask_tensor > 0] = -1e5
        previous_max_score = torch.max(rendered_mask_score[previous_mask_tensor > 0])

        previous_point_index = torch.zeros_like(index_matrix)
        previous_point_index[:,:,0] = prompt_points[-1][1] / h
        previous_point_index[:,:,1] = prompt_points[-1][0] / w
        previous_point_index[:,:,2] = index_matrix[int(prompt_points[-1][1]), int(prompt_points[-1][0]), 2]
        distance_matrix = torch.sqrt(((index_matrix - previous_point_index)**2).sum(-1))
        distance_matrix = (distance_matrix.unsqueeze(-1) - distance_matrix.min()) / (distance_matrix.max() - distance_matrix.min())

        cur_tmp_mask = tmp_mask - distance_matrix * max(previous_max_score, 0)

        if pre_tmp_mask_score is None:
            pre_tmp_mask_score = cur_tmp_mask
        else:
            pre_tmp_mask_score[pre_tmp_mask_score < cur_tmp_mask] = cur_tmp_mask[pre_tmp_mask_score < cur_tmp_mask]
            pre_tmp_mask_score[tmp_mask == -1e5] = -1e5

        tmp_val_point = pre_tmp_mask_score.view(-1).max(dim = 0)

        if tmp_val_point[0] <= 0:
            print("There are", len(prompt_points), "prompts")
            break
        prompt_points.append([int(tmp_val_point[1].cpu() % w), int(tmp_val_point[1].cpu() // w)])

    prompt_points = np.array(prompt_points)
    input_label = np.ones(len(prompt_points))

    return prompt_points, input_label


from groundingdino.util.inference import load_model, load_image, predict, annotate
import cv2
import groundingdino.datasets.transforms as T
from torchvision.ops import box_convert
from PIL import Image

def image_transform(image) -> torch.Tensor:
    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image_transformed, _ = transform(image, None)
    return image_transformed


def grounding_dino_prompt(image, text):
    
    image_tensor = image_transform(Image.fromarray(image))
    model_root = './dependencies/GroundingDINO'
    
    model = load_model(os.path.join(model_root, "groundingdino/config/GroundingDINO_SwinT_OGC.py"), os.path.join(model_root, "weights/groundingdino_swint_ogc.pth"))
    
    BOX_TRESHOLD = 0.35
    TEXT_TRESHOLD = 0.25

    boxes, logits, phrases = predict(
        model=model,
        image=image_tensor,
        caption=text,
        box_threshold=BOX_TRESHOLD,
        text_threshold=TEXT_TRESHOLD
    )
    
    h, w, _ = image.shape
    print("boxes device", boxes.device)
    boxes = boxes * torch.Tensor([w, h, w, h]).to(boxes.device)
    xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
    
    print(xyxy)
    return xyxy



'''
# new prompt strategy: bbox based
# cannot be applied to 360
try:
    prompt = seg_m_for_prompt[:,:,no]
    prompt = prompt > 0
    box_prompt = masks_to_boxes(prompt.unsqueeze(0))
    width = box_prompt[0,2] - box_prompt[0,0]
    height = box_prompt[0,3] - box_prompt[0,1]
    box_prompt[0,0] -= 0.05*width
    box_prompt[0,2] += 0.05*width
    box_prompt[0,1] -= 0.05*height
    box_prompt[0,3] += 0.05*height
#                             print(box_prompt)
    transformed_boxes = predictor.transform.apply_boxes_torch(box_prompt, image.shape[:2])
    masks, _, _ = predictor.predict_torch(
        point_coords=None,
        point_labels=None,
        boxes=transformed_boxes,
        multimask_output=False,
    )
    masks = masks.float()
except:
    continue
'''


'''
# mask based 

H,W,_ = prompt.shape
target_size = RLS.get_preprocess_shape(H,W, 256)
prompt = torch.nn.functional.interpolate(torch.tensor(prompt).float().unsqueeze(0).permute([0,3,1,2]), target_size, mode = 'bilinear')
h,w = prompt.shape[-2:]
padh = 256 - h
padw = 256 - w
prompt = F.pad(prompt, (0, padw, 0, padh))
prompt = (prompt / 255) * 40 - 20
print(prompt.shape)
prompt = prompt.squeeze(1).cpu().numpy()

masks, scores, logits = predictor.predict(
        point_coords=None,
        point_labels=None,
        mask_input=prompt,
        multimask_output=False,
    )
'''