Spaces:
Paused
Paused
File size: 28,496 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import os
import time
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import segment_coo
from . import grid
from .dvgo import Raw2Alpha, Alphas2Weights
from .dmpigo import create_full_step_id
from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
ub360_utils_cuda = load(
name='ub360_utils_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/ub360_utils.cpp', 'cuda/ub360_utils_kernel.cu']],
verbose=True)
#TODO ORIGINAL bg_len=0.2
'''Model'''
class DirectContractedVoxGO(nn.Module):
def __init__(self, xyz_min, xyz_max,
num_voxels=0, num_voxels_base=0, num_objects = 1,
alpha_init=None,
mask_cache_world_size=None,
fast_color_thres=0, bg_len=0.2,
contracted_norm='inf',
density_type='DenseGrid', k0_type='DenseGrid',
density_config={}, k0_config={},
rgbnet_dim=0,
rgbnet_depth=3, rgbnet_width=128,
viewbase_pe=4,
**kwargs):
super(DirectContractedVoxGO, self).__init__()
# xyz_min/max are the boundary that separates fg and bg scene
xyz_min = torch.Tensor(xyz_min)
xyz_max = torch.Tensor(xyz_max)
assert len(((xyz_max - xyz_min) * 100000).long().unique()), 'scene bbox must be a cube in DirectContractedVoxGO'
self.register_buffer('scene_center', (xyz_min + xyz_max) * 0.5)
self.register_buffer('scene_radius', (xyz_max - xyz_min) * 0.5)
self.register_buffer('xyz_min', torch.Tensor([-1,-1,-1]) - bg_len)
self.register_buffer('xyz_max', torch.Tensor([1,1,1]) + bg_len)
if isinstance(fast_color_thres, dict):
self._fast_color_thres = fast_color_thres
self.fast_color_thres = fast_color_thres[0]
else:
self._fast_color_thres = None
self.fast_color_thres = fast_color_thres
self.bg_len = bg_len
self.contracted_norm = contracted_norm
# determine based grid resolution
self.num_voxels_base = num_voxels_base
self.voxel_size_base = ((self.xyz_max - self.xyz_min).prod() / self.num_voxels_base).pow(1/3)
# determine init grid resolution
self._set_grid_resolution(num_voxels)
# determine the density bias shift
self.alpha_init = alpha_init
self.register_buffer('act_shift', torch.FloatTensor([np.log(1/(1-alpha_init) - 1)]))
print('dcvgo: set density bias shift to', self.act_shift)
# init density voxel grid
self.density_type = density_type
self.density_config = density_config
self.density = grid.create_grid(
density_type, channels=1, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.mode = 'coarse'
self.num_objects = num_objects
self.seg_mask_grid = grid.create_grid(
density_type, channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.mask_view_counts = torch.zeros_like(self.seg_mask_grid.grid, requires_grad=False)
self.dual_seg_mask_grid = grid.create_grid(
density_type, channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
# init color representation
self.rgbnet_kwargs = {
'rgbnet_dim': rgbnet_dim,
'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
'viewbase_pe': viewbase_pe,
}
self.k0_type = k0_type
self.k0_config = k0_config
if rgbnet_dim <= 0:
# color voxel grid (coarse stage)
self.k0_dim = 3
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet = None
else:
# feature voxel grid + shallow MLP (fine stage)
self.k0_dim = rgbnet_dim
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
dim0 = (3+3*viewbase_pe*2)
dim0 += self.k0_dim
self.rgbnet = nn.Sequential(
nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
*[
nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
for _ in range(rgbnet_depth-2)
],
nn.Linear(rgbnet_width, 3),
)
nn.init.constant_(self.rgbnet[-1].bias, 0)
print('dcvgo: feature voxel grid', self.k0)
print('dcvgo: mlp', self.rgbnet)
# Using the coarse geometry if provided (used to determine known free space and unknown space)
# Re-implement as occupancy grid (2021/1/31)
if mask_cache_world_size is None:
mask_cache_world_size = self.world_size
mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
self.mask_cache = grid.MaskGrid(
path=None, mask=mask,
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
def _set_grid_resolution(self, num_voxels):
# Determine grid resolution
self.num_voxels = num_voxels
self.voxel_size = ((self.xyz_max - self.xyz_min).prod() / num_voxels).pow(1/3)
self.world_size = ((self.xyz_max - self.xyz_min) / self.voxel_size).long()
self.world_len = self.world_size[0].item()
self.voxel_size_ratio = self.voxel_size / self.voxel_size_base
print('dcvgo: voxel_size ', self.voxel_size)
print('dcvgo: world_size ', self.world_size)
print('dcvgo: voxel_size_base ', self.voxel_size_base)
print('dcvgo: voxel_size_ratio', self.voxel_size_ratio)
def get_kwargs(self):
return {
'xyz_min': self.xyz_min.cpu().numpy(),
'xyz_max': self.xyz_max.cpu().numpy(),
'num_voxels': self.num_voxels,
'num_voxels_base': self.num_voxels_base,
'alpha_init': self.alpha_init,
'voxel_size_ratio': self.voxel_size_ratio,
'mask_cache_world_size': list(self.mask_cache.mask.shape),
'fast_color_thres': self.fast_color_thres,
'contracted_norm': self.contracted_norm,
'density_type': self.density_type,
'k0_type': self.k0_type,
'density_config': self.density_config,
'k0_config': self.k0_config,
**self.rgbnet_kwargs,
}
@torch.no_grad()
def change_num_objects(self, num_obj):
self.num_objects = num_obj
device = self.seg_mask_grid.grid.device
self.seg_mask_grid = grid.create_grid(
'DenseGrid', channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.dual_seg_mask_grid = grid.create_grid(
'DenseGrid', channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.seg_mask_grid.to(device)
self.dual_seg_mask_grid.to(device)
print("Reset the seg_mask_grid with num_objects =", num_obj)
@torch.no_grad()
def segmentation_to_density(self):
assert self.seg_mask_grid.grid.shape[1] == 1 and "multi-object seg label cannot be applied directly to the density grid"
mask_grid = torch.zeros_like(self.seg_mask_grid.grid)
mask_grid[self.seg_mask_grid.grid > 0] = 1
self.density.grid *= mask_grid
self.density.grid[self.density.grid == 0] = -1e7
@torch.no_grad()
def segmentation_only(self):
assert self.seg_mask_grid.grid.shape[1] == 1 and "multi-object seg label cannot be applied directly to the density grid"
pass
@torch.no_grad()
def change_to_fine_mode(self):
self.mode = 'fine'
@torch.no_grad()
def scale_volume_grid(self, num_voxels):
print('dcvgo: scale_volume_grid start')
ori_world_size = self.world_size
self._set_grid_resolution(num_voxels)
print('dcvgo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())
self.density.scale_volume_grid(self.world_size)
self.seg_mask_grid.scale_volume_grid(self.world_size)
self.dual_seg_mask_grid.scale_volume_grid(self.world_size)
self.k0.scale_volume_grid(self.world_size)
if np.prod(self.world_size.tolist()) <= 256**3:
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
self_alpha = F.max_pool3d(self.activate_density(self.density.get_dense_grid()), kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache = grid.MaskGrid(
path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
print('dcvgo: scale_volume_grid finish')
@torch.no_grad()
def update_occupancy_cache(self):
ori_p = self.mask_cache.mask.float().mean().item()
cache_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
), -1)
cache_grid_density = self.density(cache_grid_xyz)[None,None]
cache_grid_alpha = self.activate_density(cache_grid_density)
cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
new_p = self.mask_cache.mask.float().mean().item()
print(f'dcvgo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
def update_occupancy_cache_lt_nviews(self, rays_o_tr, rays_d_tr, imsz, render_kwargs, maskout_lt_nviews):
print('dcvgo: update mask_cache lt_nviews start')
eps_time = time.time()
count = torch.zeros_like(self.density.get_dense_grid()).long()
device = count.device
for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
for rays_o, rays_d in zip(rays_o_.split(8192), rays_d_.split(8192)):
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o.to(device), ori_rays_d=rays_d.to(device),
**render_kwargs)
ones(ray_pts).sum().backward()
count.data += (ones.grid.grad > 1)
ori_p = self.mask_cache.mask.float().mean().item()
self.mask_cache.mask &= (count >= maskout_lt_nviews)[0,0]
new_p = self.mask_cache.mask.float().mean().item()
print(f'dcvgo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
eps_time = time.time() - eps_time
print(f'dcvgo: update mask_cache lt_nviews finish (eps time:', eps_time, 'sec)')
def density_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.density.total_variation_add_grad(w, w, w, dense_mode)
def k0_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.k0.total_variation_add_grad(w, w, w, dense_mode)
def activate_density(self, density, interval=None):
interval = interval if interval is not None else self.voxel_size_ratio
shape = density.shape
return Raw2Alpha.apply(density.flatten(), self.act_shift, interval).reshape(shape)
def sample_ray(self, ori_rays_o, ori_rays_d, stepsize, is_train=False, **render_kwargs):
'''Sample query points on rays.
All the output points are sorted from near to far.
Input:
rays_o, rayd_d: both in [N, 3] indicating ray configurations.
stepsize: the number of voxels of each sample step.
Output:
ray_pts: [M, 3] storing all the sampled points.
ray_id: [M] the index of the ray of each point.
step_id: [M] the i'th step on a ray of each point.
'''
rays_o = (ori_rays_o - self.scene_center) / self.scene_radius
rays_d = ori_rays_d / ori_rays_d.norm(dim=-1, keepdim=True)
N_inner = int(2 / (2+2*self.bg_len) * self.world_len / stepsize) + 1
N_outer = N_inner
b_inner = torch.linspace(0, 2, N_inner+1)
b_outer = 2 / torch.linspace(1, 1/128, N_outer+1)
t = torch.cat([
(b_inner[1:] + b_inner[:-1]) * 0.5,
(b_outer[1:] + b_outer[:-1]) * 0.5,
])
ray_pts = rays_o[:,None,:] + rays_d[:,None,:] * t[None,:,None]
if self.contracted_norm == 'inf':
norm = ray_pts.abs().amax(dim=-1, keepdim=True)
elif self.contracted_norm == 'l2':
norm = ray_pts.norm(dim=-1, keepdim=True)
else:
raise NotImplementedError
inner_mask = (norm<=1)
ray_pts = torch.where(
inner_mask,
ray_pts,
ray_pts / norm * ((1+self.bg_len) - self.bg_len/norm)
)
return ray_pts, inner_mask.squeeze(-1), t
@torch.no_grad()
def forward(self, rays_o, rays_d, viewdirs, global_step=None, is_train=False, render_fct=0.0, **render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
@viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
if isinstance(self._fast_color_thres, dict) and global_step in self._fast_color_thres:
print(f'dcvgo: update fast_color_thres {self.fast_color_thres} => {self._fast_color_thres[global_step]}')
self.fast_color_thres = self._fast_color_thres[global_step]
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o, ori_rays_d=rays_d, is_train=global_step is not None, **render_kwargs)
n_max = len(t)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
ray_id, step_id = create_full_step_id(ray_pts.shape[:2])
# cumsum ray_pts to get distance from ray_o to any ray_pt in a ray
ray_distance = torch.zeros_like(ray_pts)
ray_distance[:, 1:] = torch.abs(ray_pts[:, 1:] - ray_pts[:, :-1])
ray_distance = torch.cumsum(ray_distance, dim=1)
# skip oversampled points outside scene bbox
mask = inner_mask.clone()
dist_thres = (2+2*self.bg_len) / self.world_len * render_kwargs['stepsize'] * 0.95
dist = (ray_pts[:,1:] - ray_pts[:,:-1]).norm(dim=-1)
mask[:, 1:] |= ub360_utils_cuda.cumdist_thres(dist, dist_thres)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[None].repeat(N,1)[mask]
ray_id = ray_id[mask.flatten()]
step_id = step_id[mask.flatten()]
# skip known free space
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
# print(self.fast_color_thres, "self.fast_color_thres")
render_fct = max(render_fct, self.fast_color_thres)
# query for alpha w/ post-activation
density = self.density(ray_pts)
alpha = self.activate_density(density, interval)
if render_fct > 0:
mask = (alpha > render_fct)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if render_fct > 0:
mask = (weights > render_fct)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for segmentation mask
# only optimize the mask volume
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
mask_pred = self.seg_mask_grid(ray_pts)
if self.mode == 'fine':
dual_mask_pred = self.dual_seg_mask_grid(ray_pts)
else:
mask_pred = self.seg_mask_grid(ray_pts)
if self.mode == 'fine':
dual_mask_pred = self.dual_seg_mask_grid(ray_pts)
# query for color
k0 = self.k0(ray_pts)
if self.rgbnet is None:
# no view-depend effect
rgb = torch.sigmoid(k0)
else:
# view-dependent color emission
viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
viewdirs_emb = viewdirs_emb.flatten(0,-2)[ray_id]
rgb_feat = torch.cat([k0, viewdirs_emb], -1)
rgb_logit = self.rgbnet(rgb_feat)
rgb = torch.sigmoid(rgb_logit)
# Ray marching
rgb_marched = segment_coo(
src=(weights.unsqueeze(-1) * rgb),
index=ray_id,
out=torch.zeros([N, 3]),
reduce='sum')
dual_seg_mask_marched = None
if self.num_objects == 1:
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if render_kwargs.get('rand_bkgd', False) and is_train:
rgb_marched += (alphainv_last.unsqueeze(-1) * torch.rand_like(rgb_marched))
else:
rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
wsum_mid = segment_coo(
src=weights[inner_mask],
index=ray_id[inner_mask],
out=torch.zeros([N]),
reduce='sum')
s = 1 - 1/(1+t) # [0, inf] => [0, 1]
ray_distance = ray_distance.norm(dim=-1)
ret_dict.update({
'alphainv_last': alphainv_last,
'weights': weights,
'wsum_mid': wsum_mid,
'rgb_marched': rgb_marched,
'raw_density': density,
'raw_alpha': alpha,
'raw_rgb': rgb,
'ray_id': ray_id,
'step_id': step_id,
'n_max': n_max,
't': t,
's': s,
'seg_mask_marched': seg_mask_marched,
'dual_seg_mask_marched': dual_seg_mask_marched,
'ray_distance': ray_distance
})
if render_kwargs.get('render_depth', False):
with torch.no_grad():
depth = segment_coo(
src=(weights * s),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
distance = segment_coo(
src=(weights * ray_distance),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
ret_dict.update({'depth': depth})
ret_dict.update({'distance': distance})
return ret_dict
@torch.no_grad()
def forward_mask(self, rays_o, rays_d, render_fct=0.0,**render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
# if isinstance(self._fast_color_thres, dict) and global_step in self._fast_color_thres:
# print(f'dcvgo: update fast_color_thres {self.fast_color_thres} => {self._fast_color_thres[global_step]}')
# self.fast_color_thres = self._fast_color_thres[global_step]
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o, ori_rays_d=rays_d, is_train=False, **render_kwargs)
n_max = len(t)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
ray_id, step_id = create_full_step_id(ray_pts.shape[:2])
# skip oversampled points outside scene bbox
mask = inner_mask.clone()
dist_thres = (2+2*self.bg_len) / self.world_len * render_kwargs['stepsize'] * 0.95
dist = (ray_pts[:,1:] - ray_pts[:,:-1]).norm(dim=-1)
mask[:, 1:] |= ub360_utils_cuda.cumdist_thres(dist, dist_thres)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[None].repeat(N,1)[mask]
ray_id = ray_id[mask.flatten()]
step_id = step_id[mask.flatten()]
# skip known free space
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
render_fct = max(render_fct, self.fast_color_thres)
# query for alpha w/ post-activation
density = self.density(ray_pts)
alpha = self.activate_density(density, interval)
if render_fct > 0:
mask = (alpha > render_fct)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if render_fct > 0:
mask = (weights > render_fct)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for segmentation mask
# only optimize the mask volume
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
mask_pred = self.seg_mask_grid(ray_pts)
else:
mask_pred = self.seg_mask_grid(ray_pts)
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
ret_dict.update({
'seg_mask_marched': seg_mask_marched,
})
return ret_dict
class DistortionLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, w, s, n_max, ray_id):
n_rays = ray_id.max()+1
interval = 1/n_max
w_prefix, w_total, ws_prefix, ws_total = ub360_utils_cuda.segment_cumsum(w, s, ray_id)
loss_uni = (1/3) * interval * w.pow(2)
loss_bi = 2 * w * (s * w_prefix - ws_prefix)
ctx.save_for_backward(w, s, w_prefix, w_total, ws_prefix, ws_total, ray_id)
ctx.interval = interval
return (loss_bi.sum() + loss_uni.sum()) / n_rays
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_back):
w, s, w_prefix, w_total, ws_prefix, ws_total, ray_id = ctx.saved_tensors
interval = ctx.interval
grad_uni = (1/3) * interval * 2 * w
w_suffix = w_total[ray_id] - (w_prefix + w)
ws_suffix = ws_total[ray_id] - (ws_prefix + w*s)
grad_bi = 2 * (s * (w_prefix - w_suffix) + (ws_suffix - ws_prefix))
grad = grad_back * (grad_bi + grad_uni)
return grad, None, None, None
distortion_loss = DistortionLoss.apply
|