File size: 8,797 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch
from tqdm import tqdm, trange
import numpy as np
from .dvgo import get_rays_of_a_view
import os
import imageio
from .utils import to8b, rgb_lpips, rgb_ssim, gen_rand_colors
import matplotlib.pyplot as plt


@torch.no_grad()
def render_viewpoints(model, render_poses, HW, Ks, ndc, render_kwargs,
                      gt_imgs=None, savedir=None, dump_images=False, cfg=None,
                      render_factor=0, render_video_flipy=False, render_video_rot90=0,
                      eval_ssim=False, eval_lpips_alex=False, eval_lpips_vgg=False, 
                      seg_mask=True, render_fct=0.0, seg_type='seg_density'):
    '''Render images for the given viewpoints; run evaluation if gt given.'''
    assert len(render_poses) == len(HW) and len(HW) == len(Ks)

    if render_factor!=0:
        HW = np.copy(HW)
        Ks = np.copy(Ks)
        HW = (HW/render_factor).astype(int)
        Ks[:, :2, :3] /= render_factor

    rgbs, segs, depths, bgmaps, psnrs, ssims, lpips_alex, lpips_vgg = [], [], [], [], [], [], [], []

    for i, c2w in enumerate(tqdm(render_poses, desc='Render {}...'.format(seg_type))):
        H, W = HW[i]
        K = Ks[i]
        c2w = torch.Tensor(c2w)
        rays_o, rays_d, viewdirs = get_rays_of_a_view(
                H, W, K, c2w, ndc, inverse_y=render_kwargs['inverse_y'],
                flip_x=cfg.data.flip_x, flip_y=cfg.data.flip_y)
        keys = ['rgb_marched', 'depth', 'alphainv_last']
        if seg_mask: keys.append('seg_mask_marched')
        rays_o = rays_o.flatten(0,-2)
        rays_d = rays_d.flatten(0,-2)
        viewdirs = viewdirs.flatten(0,-2)
        render_result_chunks = [
            {k: v for k, v in model(ro, rd, vd, render_fct=render_fct, **render_kwargs).items() if k in keys}
            for ro, rd, vd in zip(rays_o.split(8192, 0), rays_d.split(8192, 0), viewdirs.split(8192, 0))
        ]
        render_result = {
            k: torch.cat([ret[k] for ret in render_result_chunks]).reshape(H,W,-1)
            for k in render_result_chunks[0].keys()
        }
        
        rgb = render_result['rgb_marched'].cpu().numpy()
            
        if seg_mask:
            seg_m = render_result['seg_mask_marched'].cpu()
        else:
            seg_m = None
            
        depth = render_result['depth'].cpu().numpy()
        bgmap = render_result['alphainv_last'].cpu().numpy()

        rgbs.append(rgb)
        if seg_mask:
            segs.append(seg_m)
        depths.append(depth)
        bgmaps.append(bgmap)
        if i==0:
            print('Testing, rgb shape: ', rgb.shape)

        if gt_imgs is not None and render_factor==0:
            p = -10. * np.log10(np.mean(np.square(rgb - gt_imgs[i])))
            psnrs.append(p)
            if eval_ssim:
                ssims.append(rgb_ssim(rgb, gt_imgs[i], max_val=1))
            if eval_lpips_alex:
                lpips_alex.append(rgb_lpips(rgb, gt_imgs[i], net_name='alex', device=c2w.device))
            if eval_lpips_vgg:
                lpips_vgg.append(rgb_lpips(rgb, gt_imgs[i], net_name='vgg', device=c2w.device))

    if len(psnrs):
        print('Testing psnr', np.mean(psnrs), '(avg)')
        if eval_ssim: print('Testing ssim', np.mean(ssims), '(avg)')
        if eval_lpips_vgg: print('Testing lpips (vgg)', np.mean(lpips_vgg), '(avg)')
        if eval_lpips_alex: print('Testing lpips (alex)', np.mean(lpips_alex), '(avg)')

    if render_video_flipy:
        for i in range(len(rgbs)):
            rgbs[i] = np.flip(rgbs[i], axis=0)
            depths[i] = np.flip(depths[i], axis=0)
            bgmaps[i] = np.flip(bgmaps[i], axis=0)
            segs[i] = np.flip(segs[i], axis=0)

    if render_video_rot90 != 0:
        for i in range(len(rgbs)):
            rgbs[i] = np.rot90(rgbs[i], k=render_video_rot90, axes=(0,1))
            depths[i] = np.rot90(depths[i], k=render_video_rot90, axes=(0,1))
            bgmaps[i] = np.rot90(bgmaps[i], k=render_video_rot90, axes=(0,1))
            segs[i] = np.rot90(segs[i], k=render_video_rot90, axes=(0,1))
            
    if savedir is not None and dump_images:
        if seg_type == 'seg_density':
            img_dir = 'seged_img'
        elif seg_type == 'seg_img':
            img_dir = 'ori_img'
        else:
            raise NotImplementedError
        img_dir = os.path.join(savedir, img_dir)
        os.makedirs(img_dir, exist_ok=True)
        for i in trange(len(rgbs), desc='dumping images...'):
            rgb8 = to8b(rgbs[i])
            filename = os.path.join(img_dir, '{:03d}.png'.format(i))
            imageio.imwrite(filename, rgb8)

    rgbs = np.array(rgbs)
    depths = np.array(depths)
    bgmaps = np.array(bgmaps)
    if len(segs): segs = np.stack(segs)

    return rgbs, depths, bgmaps, segs


def fetch_render_params(render_type, data_dict):
    if render_type == 'train':
        render_poses=data_dict['poses'][data_dict['i_train']]
        HW=data_dict['HW'][data_dict['i_train']]
        Ks=data_dict['Ks'][data_dict['i_train']]
        gt_imgs=[data_dict['images'][i].cpu().numpy() for i in data_dict['i_train']]
    elif render_type == 'test':
        render_poses=data_dict['poses'][data_dict['i_test']]
        HW=data_dict['HW'][data_dict['i_test']]
        Ks=data_dict['Ks'][data_dict['i_test']]
        gt_imgs=[data_dict['images'][i].cpu().numpy() for i in data_dict['i_test']]
    elif render_type == 'video':
        render_poses=data_dict['render_poses']
        HW=data_dict['HW'][data_dict['i_test']][[0]].repeat(len(data_dict['render_poses']), 0)
        Ks=data_dict['Ks'][data_dict['i_test']][[0]].repeat(len(data_dict['render_poses']), 0)
        gt_imgs=None
    else:
        raise NotImplementedError
    
    return render_poses, HW, Ks, gt_imgs
        

@torch.no_grad()
def render_fn(args, cfg, ckpt_name, flag, e_flag, num_obj, data_dict, render_viewpoints_kwargs, seg_type='seg_density'):
    rand_colors = gen_rand_colors(num_obj)
    testsavedir = os.path.join(cfg.basedir, cfg.expname, f'render_{args.render_opt}_{ckpt_name}')
    os.makedirs(testsavedir, exist_ok=True)
    print('All results are dumped into', testsavedir)
    render_poses, HW, Ks, gt_imgs = fetch_render_params(args.render_opt, data_dict)
    rgbs, depths, bgmaps, segs = render_viewpoints(
            render_poses=render_poses,
            HW=HW, Ks=Ks, gt_imgs=gt_imgs,
            cfg=cfg,savedir=testsavedir, dump_images=args.dump_images,
            eval_ssim=args.eval_ssim, eval_lpips_alex=args.eval_lpips_alex, eval_lpips_vgg=args.eval_lpips_vgg,
            seg_type=seg_type,
            **render_viewpoints_kwargs)
    
    imageio.mimwrite(os.path.join(testsavedir, 'video.rgb'+flag+e_flag+'_'+seg_type+'.mp4'), to8b(rgbs), fps=30, quality=8)
    imageio.mimwrite(os.path.join(testsavedir, 'video.seg'+flag+e_flag+'_'+seg_type+'.mp4'), to8b(segs>0), fps=30, quality=8)
    # imageio.mimwrite(os.path.join(testsavedir, 'video.depth'+flag+e_flag+'_'+seg_type+'.mp4'), \
    #                  to8b(1 - depths / np.max(depths)), fps=30, quality=8)
    depth_vis = plt.get_cmap('rainbow')(1 - depths / np.max(depths)).squeeze()[..., :3]
    imageio.mimwrite(os.path.join(testsavedir, 'video.depth'+flag+e_flag+'_'+seg_type+'.mp4'), to8b(depth_vis), fps=30, quality=8)
    if False:
        depths_vis = depths * (1-bgmaps) + bgmaps
        dmin, dmax = np.percentile(depths_vis[bgmaps < 0.1], q=[5, 95])
        depth_vis = plt.get_cmap('rainbow')(1 - np.clip((depths_vis - dmin) / (dmax - dmin), 0, 1)).squeeze()[..., :3]
        imageio.mimwrite(os.path.join(testsavedir, 'video.depth'+flag+e_flag+'_'+seg_type+'.mp4'), to8b(depth_vis), fps=30, quality=8)

    if seg_type == 'seg_img':
        seg_on_rgb = []
        if args.dump_images:
            masked_img_dir = os.path.join(testsavedir, 'masked_img')
            os.makedirs(masked_img_dir, exist_ok=True)
            masks_dir = os.path.join(testsavedir, 'masks')
            os.makedirs(masks_dir, exist_ok=True)
        for i, rgb, seg in zip(range(rgbs.shape[0]), rgbs, segs):
            # Winner takes all
            max_logit = np.expand_dims(np.max(seg, axis = -1), -1)
            tmp_seg = seg
            tmp_seg = np.argmax(tmp_seg, axis = -1)
            tmp_seg[max_logit[:,:,0] <= 0.1] = num_obj
            recolored_rgb = 0.3*rgb + 0.7*(rand_colors[tmp_seg])
            seg_on_rgb.append(recolored_rgb)
            if args.dump_images:
                imageio.imwrite(os.path.join(masked_img_dir, 'rgb_{:07d}.png'.format(i)), to8b(recolored_rgb))
                imageio.imwrite(os.path.join(masks_dir, 'mask_{:07d}.png'.format(i)), to8b(seg>0))
        imageio.mimwrite(os.path.join(testsavedir, 'video.seg_on_rgb'+e_flag+'_'+seg_type+'.mp4'), to8b(seg_on_rgb), fps=30, quality=8)
        return to8b(np.stack(seg_on_rgb))
    
    return to8b(rgbs)