File size: 5,639 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
'''
Modify from
https://github.com/Kai-46/nerfplusplus/blob/master/data_loader_split.py
'''
import os
import glob
import scipy
import imageio
import numpy as np
import torch

########################################################################################################################
# camera coordinate system: x-->right, y-->down, z-->scene (opencv/colmap convention)
# poses is camera-to-world
########################################################################################################################
def find_files(dir, exts):
    if os.path.isdir(dir):
        files_grabbed = []
        for ext in exts:
            files_grabbed.extend(glob.glob(os.path.join(dir, ext)))
        if len(files_grabbed) > 0:
            files_grabbed = sorted(files_grabbed)
        return files_grabbed
    else:
        return []


def load_data_split(split_dir, skip=1, try_load_min_depth=True, only_img_files=False):

    def parse_txt(filename):
        assert os.path.isfile(filename)
        nums = open(filename).read().split()
        return np.array([float(x) for x in nums]).reshape([4, 4]).astype(np.float32)

    if only_img_files:
        img_files = find_files('{}/rgb'.format(split_dir), exts=['*.png', '*.jpg'])
        return img_files

    # camera parameters files
    intrinsics_files = find_files('{}/intrinsics'.format(split_dir), exts=['*.txt'])
    pose_files = find_files('{}/pose'.format(split_dir), exts=['*.txt'])

    intrinsics_files = intrinsics_files[::skip]
    pose_files = pose_files[::skip]
    cam_cnt = len(pose_files)

    # img files
    img_files = find_files('{}/rgb'.format(split_dir), exts=['*.png', '*.jpg'])
    if len(img_files) > 0:
        img_files = img_files[::skip]
        assert(len(img_files) == cam_cnt)
    else:
        img_files = [None, ] * cam_cnt

    # mask files
    mask_files = find_files('{}/mask'.format(split_dir), exts=['*.png', '*.jpg'])
    if len(mask_files) > 0:
        mask_files = mask_files[::skip]
        assert(len(mask_files) == cam_cnt)
    else:
        mask_files = [None, ] * cam_cnt

    # min depth files
    mindepth_files = find_files('{}/min_depth'.format(split_dir), exts=['*.png', '*.jpg'])
    if try_load_min_depth and len(mindepth_files) > 0:
        mindepth_files = mindepth_files[::skip]
        assert(len(mindepth_files) == cam_cnt)
    else:
        mindepth_files = [None, ] * cam_cnt

    return intrinsics_files, pose_files, img_files, mask_files, mindepth_files


def rerotate_poses(poses, render_poses):
    poses = np.copy(poses)
    centroid = poses[:,:3,3].mean(0)

    poses[:,:3,3] = poses[:,:3,3] - centroid

    # Find the minimum pca vector with minimum eigen value
    x = poses[:,:3,3]
    mu = x.mean(0)
    cov = np.cov((x-mu).T)
    ev , eig = np.linalg.eig(cov)
    cams_up = eig[:,np.argmin(ev)]
    if cams_up[1] < 0:
        cams_up = -cams_up

    # Find rotation matrix that align cams_up with [0,1,0]
    R = scipy.spatial.transform.Rotation.align_vectors(
            [[0,-1,0]], cams_up[None])[0].as_matrix()

    # Apply rotation and add back the centroid position
    poses[:,:3,:3] = R @ poses[:,:3,:3]
    poses[:,:3,[3]] = R @ poses[:,:3,[3]]
    poses[:,:3,3] = poses[:,:3,3] + centroid
    render_poses = np.copy(render_poses)
    render_poses[:,:3,3] = render_poses[:,:3,3] - centroid
    render_poses[:,:3,:3] = R @ render_poses[:,:3,:3]
    render_poses[:,:3,[3]] = R @ render_poses[:,:3,[3]]
    render_poses[:,:3,3] = render_poses[:,:3,3] + centroid
    return poses, render_poses


def load_nerfpp_data(basedir, rerotate=True):
    tr_K, tr_c2w, tr_im_path = load_data_split(os.path.join(basedir, 'train'))[:3]
    te_K, te_c2w, te_im_path = load_data_split(os.path.join(basedir, 'test'))[:3]
    assert len(tr_K) == len(tr_c2w) and len(tr_K) == len(tr_im_path)
    assert len(te_K) == len(te_c2w) and len(te_K) == len(te_im_path)

    # Determine split id list
    i_split = [[], []]
    i = 0
    for _ in tr_c2w:
        i_split[0].append(i)
        i += 1
    for _ in te_c2w:
        i_split[1].append(i)
        i += 1

    # Load camera intrinsics. Assume all images share a intrinsic.
    K_flatten = np.loadtxt(tr_K[0])
    for path in tr_K:
        assert np.allclose(np.loadtxt(path), K_flatten)
    for path in te_K:
        assert np.allclose(np.loadtxt(path), K_flatten)
    K = K_flatten.reshape(4,4)[:3,:3]

    # Load camera poses
    poses = []
    for path in tr_c2w:
        poses.append(np.loadtxt(path).reshape(4,4))
    for path in te_c2w:
        poses.append(np.loadtxt(path).reshape(4,4))

    # Load images
    imgs = []
    for path in tr_im_path:
        imgs.append(imageio.imread(path) / 255.)
    for path in te_im_path:
        imgs.append(imageio.imread(path) / 255.)

    # Bundle all data
    imgs = np.stack(imgs, 0)
    poses = np.stack(poses, 0)
    i_split.append(i_split[1])
    H, W = imgs.shape[1:3]
    focal = K[[0,1], [0,1]].mean()

    # Generate movie trajectory
    render_poses_path = sorted(glob.glob(os.path.join(basedir, 'camera_path', 'pose', '*txt')))
    render_poses = []
    for path in render_poses_path:
        render_poses.append(np.loadtxt(path).reshape(4,4))
    render_poses = np.array(render_poses)
    render_K = np.loadtxt(glob.glob(os.path.join(basedir, 'camera_path', 'intrinsics', '*txt'))[0]).reshape(4,4)[:3,:3]
    render_poses[:,:,0] *= K[0,0] / render_K[0,0]
    render_poses[:,:,1] *= K[1,1] / render_K[1,1]
    if rerotate:
        poses, render_poses = rerotate_poses(poses, render_poses)

    render_poses = torch.Tensor(render_poses)

    return imgs, poses, render_poses, [H, W, focal], K, i_split