Spaces:
Paused
Paused
File size: 28,063 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 |
import os
import time
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import segment_coo
from . import grid
from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
render_utils_cuda = load(
name='render_utils_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/render_utils.cpp', 'cuda/render_utils_kernel.cu']],
verbose=True)
'''Model'''
class DirectVoxGO(torch.nn.Module):
def __init__(self, xyz_min, xyz_max,
num_voxels=0, num_voxels_base=0,
alpha_init=None,
mask_cache_path=None, mask_cache_thres=1e-3, mask_cache_world_size=None,
fast_color_thres=0,
density_type='DenseGrid', k0_type='DenseGrid',
density_config={}, k0_config={},
rgbnet_dim=0, rgbnet_direct=False, rgbnet_full_implicit=False,
rgbnet_depth=3, rgbnet_width=128,
viewbase_pe=4,
**kwargs):
super(DirectVoxGO, self).__init__()
self.register_buffer('xyz_min', torch.Tensor(xyz_min))
self.register_buffer('xyz_max', torch.Tensor(xyz_max))
self.fast_color_thres = fast_color_thres
# determine based grid resolution
self.num_voxels_base = num_voxels_base
self.voxel_size_base = ((self.xyz_max - self.xyz_min).prod() / self.num_voxels_base).pow(1/3)
# determine the density bias shift
self.alpha_init = alpha_init
self.register_buffer('act_shift', torch.FloatTensor([np.log(1/(1-alpha_init) - 1)]))
print('dvgo: set density bias shift to', self.act_shift)
# determine init grid resolution
self._set_grid_resolution(num_voxels)
# init density voxel grid
self.density_type = density_type
self.density_config = density_config
self.density = grid.create_grid(
density_type, channels=1, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
# init color representation
self.rgbnet_kwargs = {
'rgbnet_dim': rgbnet_dim, 'rgbnet_direct': rgbnet_direct,
'rgbnet_full_implicit': rgbnet_full_implicit,
'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
'viewbase_pe': viewbase_pe,
}
self.k0_type = k0_type
self.k0_config = k0_config
self.rgbnet_full_implicit = rgbnet_full_implicit
if rgbnet_dim <= 0:
# color voxel grid (coarse stage)
self.k0_dim = 3
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet = None
else:
# feature voxel grid + shallow MLP (fine stage)
if self.rgbnet_full_implicit:
self.k0_dim = 0
else:
self.k0_dim = rgbnet_dim
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet_direct = rgbnet_direct
self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
dim0 = (3+3*viewbase_pe*2)
if self.rgbnet_full_implicit:
pass
elif rgbnet_direct:
dim0 += self.k0_dim
else:
dim0 += self.k0_dim-3
self.rgbnet = nn.Sequential(
nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
*[
nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
for _ in range(rgbnet_depth-2)
],
nn.Linear(rgbnet_width, 3),
)
nn.init.constant_(self.rgbnet[-1].bias, 0)
print('dvgo: feature voxel grid', self.k0)
print('dvgo: mlp', self.rgbnet)
# Using the coarse geometry if provided (used to determine known free space and unknown space)
# Re-implement as occupancy grid (2021/1/31)
self.mask_cache_path = mask_cache_path
self.mask_cache_thres = mask_cache_thres
if mask_cache_world_size is None:
mask_cache_world_size = self.world_size
if mask_cache_path is not None and mask_cache_path:
mask_cache = grid.MaskGrid(
path=mask_cache_path,
mask_cache_thres=mask_cache_thres).to(self.xyz_min.device)
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], mask_cache_world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], mask_cache_world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], mask_cache_world_size[2]),
), -1)
mask = mask_cache(self_grid_xyz)
else:
mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
self.mask_cache = grid.MaskGrid(
path=None, mask=mask,
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
def _set_grid_resolution(self, num_voxels):
# Determine grid resolution
self.num_voxels = num_voxels
self.voxel_size = ((self.xyz_max - self.xyz_min).prod() / num_voxels).pow(1/3)
self.world_size = ((self.xyz_max - self.xyz_min) / self.voxel_size).long()
self.voxel_size_ratio = self.voxel_size / self.voxel_size_base
print('dvgo: voxel_size ', self.voxel_size)
print('dvgo: world_size ', self.world_size)
print('dvgo: voxel_size_base ', self.voxel_size_base)
print('dvgo: voxel_size_ratio', self.voxel_size_ratio)
def get_kwargs(self):
return {
'xyz_min': self.xyz_min.cpu().numpy(),
'xyz_max': self.xyz_max.cpu().numpy(),
'num_voxels': self.num_voxels,
'num_voxels_base': self.num_voxels_base,
'alpha_init': self.alpha_init,
'voxel_size_ratio': self.voxel_size_ratio,
'mask_cache_path': self.mask_cache_path,
'mask_cache_thres': self.mask_cache_thres,
'mask_cache_world_size': list(self.mask_cache.mask.shape),
'fast_color_thres': self.fast_color_thres,
'density_type': self.density_type,
'k0_type': self.k0_type,
'density_config': self.density_config,
'k0_config': self.k0_config,
**self.rgbnet_kwargs,
}
@torch.no_grad()
def maskout_near_cam_vox(self, cam_o, near_clip):
# maskout grid points that between cameras and their near planes
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
nearest_dist = torch.stack([
(self_grid_xyz.unsqueeze(-2) - co).pow(2).sum(-1).sqrt().amin(-1)
for co in cam_o.split(100) # for memory saving
]).amin(0)
self.density.grid[nearest_dist[None,None] <= near_clip] = -100
@torch.no_grad()
def scale_volume_grid(self, num_voxels):
print('dvgo: scale_volume_grid start')
ori_world_size = self.world_size
self._set_grid_resolution(num_voxels)
print('dvgo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())
self.density.scale_volume_grid(self.world_size)
self.k0.scale_volume_grid(self.world_size)
if np.prod(self.world_size.tolist()) <= 256**3:
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
self_alpha = F.max_pool3d(self.activate_density(self.density.get_dense_grid()), kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache = grid.MaskGrid(
path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
print('dvgo: scale_volume_grid finish')
@torch.no_grad()
def update_occupancy_cache(self):
cache_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
), -1)
cache_grid_density = self.density(cache_grid_xyz)[None,None]
cache_grid_alpha = self.activate_density(cache_grid_density)
cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
def voxel_count_views(self, rays_o_tr, rays_d_tr, imsz, near, far, stepsize, downrate=1, irregular_shape=False):
print('dvgo: voxel_count_views start')
far = 1e9 # the given far can be too small while rays stop when hitting scene bbox
eps_time = time.time()
N_samples = int(np.linalg.norm(np.array(self.world_size.cpu())+1) / stepsize) + 1
rng = torch.arange(N_samples)[None].float()
count = torch.zeros_like(self.density.get_dense_grid())
device = rng.device
for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
if irregular_shape:
rays_o_ = rays_o_.split(10000)
rays_d_ = rays_d_.split(10000)
else:
rays_o_ = rays_o_[::downrate, ::downrate].to(device).flatten(0,-2).split(10000)
rays_d_ = rays_d_[::downrate, ::downrate].to(device).flatten(0,-2).split(10000)
for rays_o, rays_d in zip(rays_o_, rays_d_):
vec = torch.where(rays_d==0, torch.full_like(rays_d, 1e-6), rays_d)
rate_a = (self.xyz_max - rays_o) / vec
rate_b = (self.xyz_min - rays_o) / vec
t_min = torch.minimum(rate_a, rate_b).amax(-1).clamp(min=near, max=far)
t_max = torch.maximum(rate_a, rate_b).amin(-1).clamp(min=near, max=far)
step = stepsize * self.voxel_size * rng
interpx = (t_min[...,None] + step/rays_d.norm(dim=-1,keepdim=True))
rays_pts = rays_o[...,None,:] + rays_d[...,None,:] * interpx[...,None]
ones(rays_pts).sum().backward()
with torch.no_grad():
count += (ones.grid.grad > 1)
eps_time = time.time() - eps_time
print('dvgo: voxel_count_views finish (eps time:', eps_time, 'sec)')
return count
def density_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.density.total_variation_add_grad(w, w, w, dense_mode)
def k0_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.k0.total_variation_add_grad(w, w, w, dense_mode)
def activate_density(self, density, interval=None):
interval = interval if interval is not None else self.voxel_size_ratio
shape = density.shape
return Raw2Alpha.apply(density.flatten(), self.act_shift, interval).reshape(shape)
def hit_coarse_geo(self, rays_o, rays_d, near, far, stepsize, **render_kwargs):
'''Check whether the rays hit the solved coarse geometry or not'''
far = 1e9 # the given far can be too small while rays stop when hitting scene bbox
shape = rays_o.shape[:-1]
rays_o = rays_o.reshape(-1, 3).contiguous()
rays_d = rays_d.reshape(-1, 3).contiguous()
stepdist = stepsize * self.voxel_size
ray_pts, mask_outbbox, ray_id = render_utils_cuda.sample_pts_on_rays(
rays_o, rays_d, self.xyz_min, self.xyz_max, near, far, stepdist)[:3]
mask_inbbox = ~mask_outbbox
hit = torch.zeros([len(rays_o)], dtype=torch.bool)
hit[ray_id[mask_inbbox][self.mask_cache(ray_pts[mask_inbbox])]] = 1
return hit.reshape(shape)
def sample_ray(self, rays_o, rays_d, near, far, stepsize, **render_kwargs):
'''Sample query points on rays.
All the output points are sorted from near to far.
Input:
rays_o, rayd_d: both in [N, 3] indicating ray configurations.
near, far: the near and far distance of the rays.
stepsize: the number of voxels of each sample step.
Output:
ray_pts: [M, 3] storing all the sampled points.
ray_id: [M] the index of the ray of each point.
step_id: [M] the i'th step on a ray of each point.
'''
far = 1e9 # the given far can be too small while rays stop when hitting scene bbox
rays_o = rays_o.contiguous()
rays_d = rays_d.contiguous()
stepdist = stepsize * self.voxel_size
ray_pts, mask_outbbox, ray_id, step_id, N_steps, t_min, t_max = render_utils_cuda.sample_pts_on_rays(
rays_o, rays_d, self.xyz_min, self.xyz_max, near, far, stepdist)
mask_inbbox = ~mask_outbbox
ray_pts = ray_pts[mask_inbbox]
ray_id = ray_id[mask_inbbox]
step_id = step_id[mask_inbbox]
return ray_pts, ray_id, step_id
def forward(self, rays_o, rays_d, viewdirs, global_step=None, render_fct=0.0,**render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
@viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, ray_id, step_id = self.sample_ray(
rays_o=rays_o, rays_d=rays_d, **render_kwargs)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
# skip known free space
if self.mask_cache is not None:
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
# self.fast_color_thres = 0.1
render_fct = max(render_fct, self.fast_color_thres)
# query for alpha w/ post-activation
density = self.density(ray_pts)
alpha = self.activate_density(density, interval)
if render_fct > 0:
mask = (alpha > render_fct)
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if render_fct > 0:
mask = (weights > render_fct)
weights = weights[mask]
alpha = alpha[mask]
ray_pts = ray_pts[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
# query for color
if self.rgbnet_full_implicit:
pass
else:
k0 = self.k0(ray_pts)
if self.rgbnet is None:
# no view-depend effect
rgb = torch.sigmoid(k0)
else:
# view-dependent color emission
if self.rgbnet_direct:
k0_view = k0
else:
k0_view = k0[:, 3:]
k0_diffuse = k0[:, :3]
viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
viewdirs_emb = viewdirs_emb.flatten(0,-2)[ray_id]
rgb_feat = torch.cat([k0_view, viewdirs_emb], -1)
rgb_logit = self.rgbnet(rgb_feat)
if self.rgbnet_direct:
rgb = torch.sigmoid(rgb_logit)
else:
rgb = torch.sigmoid(rgb_logit + k0_diffuse)
# Ray marching
rgb_marched = segment_coo(
src=(weights.unsqueeze(-1) * rgb),
index=ray_id,
out=torch.zeros([N, 3]),
reduce='sum')
rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
ret_dict.update({
'alphainv_last': alphainv_last,
'weights': weights,
'rgb_marched': rgb_marched,
'raw_alpha': alpha,
'raw_rgb': rgb,
'ray_id': ray_id,
'density': density,
'ray_pts': ray_pts
})
if render_kwargs.get('render_depth', False):
with torch.no_grad():
depth = segment_coo(
src=(weights * step_id),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
ret_dict.update({'depth': depth})
return ret_dict
''' Misc
'''
class Raw2Alpha(torch.autograd.Function):
@staticmethod
def forward(ctx, density, shift, interval):
'''
alpha = 1 - exp(-softplus(density + shift) * interval)
= 1 - exp(-log(1 + exp(density + shift)) * interval)
= 1 - exp(log(1 + exp(density + shift)) ^ (-interval))
= 1 - (1 + exp(density + shift)) ^ (-interval)
'''
exp, alpha = render_utils_cuda.raw2alpha(density, shift, interval)
if density.requires_grad:
ctx.save_for_backward(exp)
ctx.interval = interval
return alpha
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_back):
'''
alpha' = interval * ((1 + exp(density + shift)) ^ (-interval-1)) * exp(density + shift)'
= interval * ((1 + exp(density + shift)) ^ (-interval-1)) * exp(density + shift)
'''
exp = ctx.saved_tensors[0]
interval = ctx.interval
return render_utils_cuda.raw2alpha_backward(exp, grad_back.contiguous(), interval), None, None
class Raw2Alpha_nonuni(torch.autograd.Function):
@staticmethod
def forward(ctx, density, shift, interval):
exp, alpha = render_utils_cuda.raw2alpha_nonuni(density, shift, interval)
if density.requires_grad:
ctx.save_for_backward(exp)
ctx.interval = interval
return alpha
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_back):
exp = ctx.saved_tensors[0]
interval = ctx.interval
return render_utils_cuda.raw2alpha_nonuni_backward(exp, grad_back.contiguous(), interval), None, None
class Alphas2Weights(torch.autograd.Function):
@staticmethod
def forward(ctx, alpha, ray_id, N):
weights, T, alphainv_last, i_start, i_end = render_utils_cuda.alpha2weight(alpha, ray_id, N)
if alpha.requires_grad:
ctx.save_for_backward(alpha, weights, T, alphainv_last, i_start, i_end)
ctx.n_rays = N
return weights, alphainv_last
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_weights, grad_last):
alpha, weights, T, alphainv_last, i_start, i_end = ctx.saved_tensors
grad = render_utils_cuda.alpha2weight_backward(
alpha, weights, T, alphainv_last,
i_start, i_end, ctx.n_rays, grad_weights, grad_last)
return grad, None, None
''' Ray and batch
'''
def get_rays(H, W, K, c2w, inverse_y, flip_x, flip_y, mode='center'):
i, j = torch.meshgrid(
torch.linspace(0, W-1, W, device=c2w.device),
torch.linspace(0, H-1, H, device=c2w.device)) # pytorch's meshgrid has indexing='ij'
i = i.t().float()
j = j.t().float()
if mode == 'lefttop':
pass
elif mode == 'center':
i, j = i+0.5, j+0.5
elif mode == 'random':
i = i+torch.rand_like(i)
j = j+torch.rand_like(j)
else:
raise NotImplementedError
if flip_x:
i = i.flip((1,))
if flip_y:
j = j.flip((0,))
if inverse_y:
dirs = torch.stack([(i-K[0][2])/K[0][0], (j-K[1][2])/K[1][1], torch.ones_like(i)], -1)
else:
dirs = torch.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3,3].expand(rays_d.shape)
return rays_o, rays_d
def get_rays_np(H, W, K, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i-K[0][2])/K[0][0], -(j-K[1][2])/K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3,3], np.shape(rays_d))
return rays_o, rays_d
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[...,2]) / rays_d[...,2]
rays_o = rays_o + t[...,None] * rays_d
# Projection
o0 = -1./(W/(2.*focal)) * rays_o[...,0] / rays_o[...,2]
o1 = -1./(H/(2.*focal)) * rays_o[...,1] / rays_o[...,2]
o2 = 1. + 2. * near / rays_o[...,2]
d0 = -1./(W/(2.*focal)) * (rays_d[...,0]/rays_d[...,2] - rays_o[...,0]/rays_o[...,2])
d1 = -1./(H/(2.*focal)) * (rays_d[...,1]/rays_d[...,2] - rays_o[...,1]/rays_o[...,2])
d2 = -2. * near / rays_o[...,2]
rays_o = torch.stack([o0,o1,o2], -1)
rays_d = torch.stack([d0,d1,d2], -1)
return rays_o, rays_d
def get_rays_of_a_view(H, W, K, c2w, ndc, inverse_y, flip_x, flip_y, mode='center'):
rays_o, rays_d = get_rays(H, W, K, c2w, inverse_y=inverse_y, flip_x=flip_x, flip_y=flip_y, mode=mode)
viewdirs = rays_d / rays_d.norm(dim=-1, keepdim=True)
if ndc:
rays_o, rays_d = ndc_rays(H, W, K[0][0], 1., rays_o, rays_d)
return rays_o, rays_d, viewdirs
@torch.no_grad()
def get_training_rays(rgb_tr, train_poses, HW, Ks, ndc, inverse_y, flip_x, flip_y):
print('get_training_rays: start')
assert len(np.unique(HW, axis=0)) == 1
assert len(np.unique(Ks.reshape(len(Ks),-1), axis=0)) == 1
assert len(rgb_tr) == len(train_poses) and len(rgb_tr) == len(Ks) and len(rgb_tr) == len(HW)
H, W = HW[0]
K = Ks[0]
eps_time = time.time()
rays_o_tr = torch.zeros([len(rgb_tr), H, W, 3], device=rgb_tr.device)
rays_d_tr = torch.zeros([len(rgb_tr), H, W, 3], device=rgb_tr.device)
viewdirs_tr = torch.zeros([len(rgb_tr), H, W, 3], device=rgb_tr.device)
imsz = [1] * len(rgb_tr)
for i, c2w in enumerate(train_poses):
rays_o, rays_d, viewdirs = get_rays_of_a_view(
H=H, W=W, K=K, c2w=c2w, ndc=ndc, inverse_y=inverse_y, flip_x=flip_x, flip_y=flip_y)
rays_o_tr[i].copy_(rays_o.to(rgb_tr.device))
rays_d_tr[i].copy_(rays_d.to(rgb_tr.device))
viewdirs_tr[i].copy_(viewdirs.to(rgb_tr.device))
del rays_o, rays_d, viewdirs
eps_time = time.time() - eps_time
print('get_training_rays: finish (eps time:', eps_time, 'sec)')
return rgb_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz
@torch.no_grad()
def get_training_rays_flatten(rgb_tr_ori, train_poses, HW, Ks, ndc, inverse_y, flip_x, flip_y):
print('get_training_rays_flatten: start')
assert len(rgb_tr_ori) == len(train_poses) and len(rgb_tr_ori) == len(Ks) and len(rgb_tr_ori) == len(HW)
eps_time = time.time()
DEVICE = rgb_tr_ori[0].device
N = sum(im.shape[0] * im.shape[1] for im in rgb_tr_ori)
rgb_tr = torch.zeros([N,3], device=DEVICE)
rays_o_tr = torch.zeros_like(rgb_tr)
rays_d_tr = torch.zeros_like(rgb_tr)
viewdirs_tr = torch.zeros_like(rgb_tr)
imsz = []
top = 0
for c2w, img, (H, W), K in zip(train_poses, rgb_tr_ori, HW, Ks):
assert img.shape[:2] == (H, W)
rays_o, rays_d, viewdirs = get_rays_of_a_view(
H=H, W=W, K=K, c2w=c2w, ndc=ndc,
inverse_y=inverse_y, flip_x=flip_x, flip_y=flip_y)
n = H * W
rgb_tr[top:top+n].copy_(img.flatten(0,1))
rays_o_tr[top:top+n].copy_(rays_o.flatten(0,1).to(DEVICE))
rays_d_tr[top:top+n].copy_(rays_d.flatten(0,1).to(DEVICE))
viewdirs_tr[top:top+n].copy_(viewdirs.flatten(0,1).to(DEVICE))
imsz.append(n)
top += n
assert top == N
eps_time = time.time() - eps_time
print('get_training_rays_flatten: finish (eps time:', eps_time, 'sec)')
return rgb_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz
@torch.no_grad()
def get_training_rays_in_maskcache_sampling(rgb_tr_ori, train_poses, HW, Ks, ndc, inverse_y, flip_x, flip_y, model, render_kwargs):
print('get_training_rays_in_maskcache_sampling: start')
assert len(rgb_tr_ori) == len(train_poses) and len(rgb_tr_ori) == len(Ks) and len(rgb_tr_ori) == len(HW)
CHUNK = 64
DEVICE = rgb_tr_ori[0].device
eps_time = time.time()
N = sum(im.shape[0] * im.shape[1] for im in rgb_tr_ori)
rgb_tr = torch.zeros([N,3], device=DEVICE)
rays_o_tr = torch.zeros_like(rgb_tr)
rays_d_tr = torch.zeros_like(rgb_tr)
viewdirs_tr = torch.zeros_like(rgb_tr)
imsz = []
top = 0
for c2w, img, (H, W), K in zip(train_poses, rgb_tr_ori, HW, Ks):
assert img.shape[:2] == (H, W)
rays_o, rays_d, viewdirs = get_rays_of_a_view(
H=H, W=W, K=K, c2w=c2w, ndc=ndc,
inverse_y=inverse_y, flip_x=flip_x, flip_y=flip_y)
mask = torch.empty(img.shape[:2], device=DEVICE, dtype=torch.bool)
for i in range(0, img.shape[0], CHUNK):
mask[i:i+CHUNK] = model.hit_coarse_geo(
rays_o=rays_o[i:i+CHUNK], rays_d=rays_d[i:i+CHUNK], **render_kwargs).to(DEVICE)
n = mask.sum()
rgb_tr[top:top+n].copy_(img[mask])
rays_o_tr[top:top+n].copy_(rays_o[mask].to(DEVICE))
rays_d_tr[top:top+n].copy_(rays_d[mask].to(DEVICE))
viewdirs_tr[top:top+n].copy_(viewdirs[mask].to(DEVICE))
imsz.append(n)
top += n
print('get_training_rays_in_maskcache_sampling: ratio', top / N)
rgb_tr = rgb_tr[:top]
rays_o_tr = rays_o_tr[:top]
rays_d_tr = rays_d_tr[:top]
viewdirs_tr = viewdirs_tr[:top]
eps_time = time.time() - eps_time
print('get_training_rays_in_maskcache_sampling: finish (eps time:', eps_time, 'sec)')
return rgb_tr, rays_o_tr, rays_d_tr, viewdirs_tr, imsz
def batch_indices_generator(N, BS):
# torch.randperm on cuda produce incorrect results in my machine
idx, top = torch.LongTensor(np.random.permutation(N)), 0
while True:
if top + BS > N:
idx, top = torch.LongTensor(np.random.permutation(N)), 0
yield idx[top:top+BS]
top += BS
|