File size: 3,844 Bytes
b177539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import os
import numpy as np
import imageio


def load_dv_data(scene='cube', basedir='/data/deepvoxels', testskip=1):

    def parse_intrinsics(filepath, trgt_sidelength, invert_y=False):
        # Get camera intrinsics
        with open(filepath, 'r') as file:
            f, cx, cy = list(map(float, file.readline().split()))[:3]
            grid_barycenter = np.array(list(map(float, file.readline().split())))
            near_plane = float(file.readline())
            scale = float(file.readline())
            height, width = map(float, file.readline().split())

            try:
                world2cam_poses = int(file.readline())
            except ValueError:
                world2cam_poses = None

        if world2cam_poses is None:
            world2cam_poses = False

        world2cam_poses = bool(world2cam_poses)

        print(cx,cy,f,height,width)

        cx = cx / width * trgt_sidelength
        cy = cy / height * trgt_sidelength
        f = trgt_sidelength / height * f

        fx = f
        if invert_y:
            fy = -f
        else:
            fy = f

        # Build the intrinsic matrices
        full_intrinsic = np.array([[fx, 0., cx, 0.],
                                   [0., fy, cy, 0],
                                   [0., 0, 1, 0],
                                   [0, 0, 0, 1]])

        return full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses


    def load_pose(filename):
        assert os.path.isfile(filename)
        nums = open(filename).read().split()
        return np.array([float(x) for x in nums]).reshape([4,4]).astype(np.float32)


    H = 512
    W = 512
    deepvoxels_base = '{}/train/{}/'.format(basedir, scene)

    full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses = parse_intrinsics(os.path.join(deepvoxels_base, 'intrinsics.txt'), H)
    print(full_intrinsic, grid_barycenter, scale, near_plane, world2cam_poses)
    focal = full_intrinsic[0,0]
    print(H, W, focal)

    def dir2poses(posedir):
        poses = np.stack([load_pose(os.path.join(posedir, f)) for f in sorted(os.listdir(posedir)) if f.endswith('txt')], 0)
        transf = np.array([
            [1,0,0,0],
            [0,-1,0,0],
            [0,0,-1,0],
            [0,0,0,1.],
        ])
        poses = poses @ transf
        poses = poses[:,:3,:4].astype(np.float32)
        return poses

    posedir = os.path.join(deepvoxels_base, 'pose')
    poses = dir2poses(posedir)
    testposes = dir2poses('{}/test/{}/pose'.format(basedir, scene))
    testposes = testposes[::testskip]
    valposes = dir2poses('{}/validation/{}/pose'.format(basedir, scene))
    valposes = valposes[::testskip]

    imgfiles = [f for f in sorted(os.listdir(os.path.join(deepvoxels_base, 'rgb'))) if f.endswith('png')]
    imgs = np.stack([imageio.imread(os.path.join(deepvoxels_base, 'rgb', f))/255. for f in imgfiles], 0).astype(np.float32)

    testimgd = '{}/test/{}/rgb'.format(basedir, scene)
    imgfiles = [f for f in sorted(os.listdir(testimgd)) if f.endswith('png')]
    testimgs = np.stack([imageio.imread(os.path.join(testimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)

    valimgd = '{}/validation/{}/rgb'.format(basedir, scene)
    imgfiles = [f for f in sorted(os.listdir(valimgd)) if f.endswith('png')]
    valimgs = np.stack([imageio.imread(os.path.join(valimgd, f))/255. for f in imgfiles[::testskip]], 0).astype(np.float32)

    all_imgs = [imgs, valimgs, testimgs]
    counts = [0] + [x.shape[0] for x in all_imgs]
    counts = np.cumsum(counts)
    i_split = [np.arange(counts[i], counts[i+1]) for i in range(3)]

    imgs = np.concatenate(all_imgs, 0)
    poses = np.concatenate([poses, valposes, testposes], 0)

    render_poses = testposes

    print(poses.shape, imgs.shape)

    return imgs, poses, render_poses, [H, W, focal], i_split