Spaces:
Paused
Paused
File size: 4,266 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import numpy as np
from PIL import Image
import torch
def resize_to_image_8():
# 原始图片文件夹路径
input_folder = "D:\XMU\mac\hujie\\3D\DUSt3R\dust3r\data\llff(sanerf-hq)\colinepiano\images"
# 新的保存缩放图片的文件夹路径
output_folder = "D:\XMU\mac\hujie\\3D\DUSt3R\dust3r\data\llff(sanerf-hq)\colinepiano\images_8"
# 创建输出文件夹(如果不存在)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 遍历输入文件夹中的所有文件
for filename in os.listdir(input_folder):
# 获取文件路径
file_path = os.path.join(input_folder, filename)
# 确保是文件且是图片文件(这里假设图片格式为jpg或png)
if os.path.isfile(file_path) and filename.lower().endswith(('.jpg', '.jpeg', '.png')):
# 打开图片
original_image = Image.open(file_path)
# 获取原始尺寸
original_width, original_height = original_image.size
# 计算缩放后的尺寸(1/8)
new_width = original_width // 8
new_height = original_height // 8
# 进行缩放
resized_image = original_image.resize((new_width, new_height), Image.LANCZOS)
# 生成新的文件名并保存到输出文件夹
new_file_path = os.path.join(output_folder, filename)
resized_image.save(new_file_path)
print(f"Image {filename} resized and saved to {new_file_path}")
print("All images have been resized and saved.")
def RGB_to_mask():
# 输入文件夹路径
input_folder = "D:\XMU\mac\hujie\\3D\DUSt3R\dust3r\data\llff(sanerf-hq)\\piano\gt"
# 输出文件夹路径
output_folder = "D:\XMU\mac\hujie\\3D\DUSt3R\dust3r\data\llff(sanerf-hq)\\piano\gt_masks"
# 创建输出文件夹(如果不存在)
if not os.path.exists(output_folder):
os.makedirs(output_folder)
# 遍历输入文件夹中的所有文件
for filename in os.listdir(input_folder):
# 构建完整的文件路径
file_path = os.path.join(input_folder, filename)
# 打开图片
image = Image.open(file_path).convert('RGB')
# 转换为灰度图像
gray_image = image.convert('L')
# 转换为NumPy数组
gray_array = np.array(gray_image)
# 二值化(假设阈值为128,可根据需要调整)
threshold = 10
binary_array = (gray_array > threshold).astype(np.uint8) * 255
# 转换为Image对象
binary_image = Image.fromarray(binary_array, 'L') # 'L'代表灰度模式
base_name, extension = os.path.splitext(filename)
# 生成新的文件名
new_filename = base_name + "_mask" + extension
new_file_path = os.path.join(output_folder, new_filename)
# 保存新的图片
binary_image.save(new_file_path)
print(f"Converted {filename} to {new_filename} and saved.")
print("All images have been processed.")
# 读取mask文件夹下的所有ground truth masks,不再需要经过SAM生成mask
def get_gt_masks(folder_path):
from dust3r.utils.image import load_images, rgb
imgs_mask = load_images(folder_path, 512)
# 定义保存布尔mask的列表
bool_masks = []
for mask in imgs_mask:
image_array = mask['img'].squeeze(0).numpy()
# 将RGB图像转换为灰度图像
# 使用简单的加权方法转换为灰度: Y = 0.299*R + 0.587*G + 0.114*B
gray_image = 0.299 * image_array[0] + 0.587 * image_array[1] + 0.114 * image_array[2]
# 将灰度图像转换为布尔数组(前景为True,背景为False)
bool_array = gray_image > 0
# 将布尔数组添加到列表中
bool_masks.append(bool_array)
# 输出布尔mask的数量
print(f"Total number of mask images processed: {len(bool_masks)}")
return bool_masks
if __name__ == "__main__":
# 输入文件夹路径
folder_path = "D:\XMU\mac\hujie\\3D\DUSt3R\dust3r\data\llff(sanerf-hq)\cecread\gt_masks"
RGB_to_mask()
|