Spaces:
Paused
Paused
File size: 6,449 Bytes
b177539 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# utilities needed for the inference
# --------------------------------------------------------
import tqdm
import torch
from dust3r.utils.device import to_cpu, collate_with_cat
from dust3r.model import AsymmetricCroCo3DStereo, inf # noqa: F401, needed when loading the model
from dust3r.utils.misc import invalid_to_nans
from dust3r.utils.geometry import depthmap_to_pts3d, geotrf
def load_model(model_path, device):
print('... loading model from', model_path)
ckpt = torch.load(model_path, map_location='cpu')
args = ckpt['args'].model.replace("ManyAR_PatchEmbed", "PatchEmbedDust3R")
if 'landscape_only' not in args:
args = args[:-1] + ', landscape_only=False)'
else:
args = args.replace(" ", "").replace('landscape_only=True', 'landscape_only=False')
assert "landscape_only=False" in args
print(f"instantiating : {args}")
net = eval(args)
print(net.load_state_dict(ckpt['model'], strict=False))
return net.to(device)
def _interleave_imgs(img1, img2):
res = {}
for key, value1 in img1.items():
value2 = img2[key]
if isinstance(value1, torch.Tensor):
value = torch.stack((value1, value2), dim=1).flatten(0, 1)
else:
value = [x for pair in zip(value1, value2) for x in pair]
res[key] = value
return res
def make_batch_symmetric(batch):
view1, view2 = batch
view1, view2 = (_interleave_imgs(view1, view2), _interleave_imgs(view2, view1))
return view1, view2
def loss_of_one_batch(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None):
view1, view2 = batch # 输入模型的两张图片
for view in batch: # 将输入的图片放到GPU上
for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split(): # pseudo_focal
if name not in view:
continue
view[name] = view[name].to(device, non_blocking=True) # 放到GPU上
if symmetrize_batch:
view1, view2 = make_batch_symmetric(batch)
with torch.cuda.amp.autocast(enabled=bool(use_amp)):
pred1, pred2 = model(view1, view2) # model:AsymmetricCroCo3DStereo
# loss is supposed to be symmetric
with torch.cuda.amp.autocast(enabled=False):# loss = None
loss = criterion(view1, view2, pred1, pred2) if criterion is not None else None
result = dict(view1=view1, view2=view2, pred1=pred1, pred2=pred2, loss=loss) #这里loss为None
return result[ret] if ret else result
@torch.no_grad()
def inference(pairs, model, device, batch_size=8):
print(f'>> Inference with model on {len(pairs)} image pairs') # 所有照片两两成一对
result = []
# first, check if all images have the same size
multiple_shapes = not (check_if_same_size(pairs))
if multiple_shapes: # force bs=1
batch_size = 1
for i in tqdm.trange(0, len(pairs), batch_size): # 将所有的pairs依次输入模型
res = loss_of_one_batch(collate_with_cat(pairs[i:i+batch_size]), model, None, device)
result.append(to_cpu(res))
result = collate_with_cat(result, lists=multiple_shapes) # view1、view2分别表示输入模型的两张图片
torch.cuda.empty_cache()
return result
def check_if_same_size(pairs):
shapes1 = [img1['img'].shape[-2:] for img1, img2 in pairs]
shapes2 = [img2['img'].shape[-2:] for img1, img2 in pairs]
return all(shapes1[0] == s for s in shapes1) and all(shapes2[0] == s for s in shapes2)
def get_pred_pts3d(gt, pred, use_pose=False):
if 'depth' in pred and 'pseudo_focal' in pred:
try:
pp = gt['camera_intrinsics'][..., :2, 2]
except KeyError:
pp = None
pts3d = depthmap_to_pts3d(**pred, pp=pp)
elif 'pts3d' in pred:
# pts3d from my camera
pts3d = pred['pts3d']
elif 'pts3d_in_other_view' in pred:
# pts3d from the other camera, already transformed
assert use_pose is True
return pred['pts3d_in_other_view'] # return!
if use_pose:
camera_pose = pred.get('camera_pose')
assert camera_pose is not None
pts3d = geotrf(camera_pose, pts3d)
return pts3d
def find_opt_scaling(gt_pts1, gt_pts2, pr_pts1, pr_pts2=None, fit_mode='weiszfeld_stop_grad', valid1=None, valid2=None):
assert gt_pts1.ndim == pr_pts1.ndim == 4
assert gt_pts1.shape == pr_pts1.shape
if gt_pts2 is not None:
assert gt_pts2.ndim == pr_pts2.ndim == 4
assert gt_pts2.shape == pr_pts2.shape
# concat the pointcloud
nan_gt_pts1 = invalid_to_nans(gt_pts1, valid1).flatten(1, 2)
nan_gt_pts2 = invalid_to_nans(gt_pts2, valid2).flatten(1, 2) if gt_pts2 is not None else None
pr_pts1 = invalid_to_nans(pr_pts1, valid1).flatten(1, 2)
pr_pts2 = invalid_to_nans(pr_pts2, valid2).flatten(1, 2) if pr_pts2 is not None else None
all_gt = torch.cat((nan_gt_pts1, nan_gt_pts2), dim=1) if gt_pts2 is not None else nan_gt_pts1
all_pr = torch.cat((pr_pts1, pr_pts2), dim=1) if pr_pts2 is not None else pr_pts1
dot_gt_pr = (all_pr * all_gt).sum(dim=-1)
dot_gt_gt = all_gt.square().sum(dim=-1)
if fit_mode.startswith('avg'):
# scaling = (all_pr / all_gt).view(B, -1).mean(dim=1)
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
elif fit_mode.startswith('median'):
scaling = (dot_gt_pr / dot_gt_gt).nanmedian(dim=1).values
elif fit_mode.startswith('weiszfeld'):
# init scaling with l2 closed form
scaling = dot_gt_pr.nanmean(dim=1) / dot_gt_gt.nanmean(dim=1)
# iterative re-weighted least-squares
for iter in range(10):
# re-weighting by inverse of distance
dis = (all_pr - scaling.view(-1, 1, 1) * all_gt).norm(dim=-1)
# print(dis.nanmean(-1))
w = dis.clip_(min=1e-8).reciprocal()
# update the scaling with the new weights
scaling = (w * dot_gt_pr).nanmean(dim=1) / (w * dot_gt_gt).nanmean(dim=1)
else:
raise ValueError(f'bad {fit_mode=}')
if fit_mode.endswith('stop_grad'):
scaling = scaling.detach()
scaling = scaling.clip(min=1e-3)
# assert scaling.isfinite().all(), bb()
return scaling
|