Spaces:
Build error
Build error
File size: 5,336 Bytes
f93a3d8 b6db393 f93a3d8 a45b5e7 f93a3d8 f65783a f93a3d8 bfa7fa8 f93a3d8 f65783a f93a3d8 f65783a f93a3d8 f65783a f93a3d8 f65783a f93a3d8 f65783a f93a3d8 97de291 f93a3d8 bfa7fa8 b768da6 a45b5e7 0ca1c5a f93a3d8 578bca9 bfa7fa8 97de291 bfa7fa8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SEScore: a text generation evaluation metric """
import evaluate
import datasets
import comet
from typing import Dict
import torch
from comet.encoders.base import Encoder
from comet.encoders.bert import BERTEncoder
from transformers import AutoModel, AutoTokenizer
class robertaEncoder(BERTEncoder):
def __init__(self, pretrained_model: str) -> None:
super(Encoder, self).__init__()
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
self.model = AutoModel.from_pretrained(
pretrained_model, add_pooling_layer=False
)
self.model.encoder.output_hidden_states = True
@classmethod
def from_pretrained(cls, pretrained_model: str) -> Encoder:
return robertaEncoder(pretrained_model)
def forward(
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs
) -> Dict[str, torch.Tensor]:
last_hidden_states, _, all_layers = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=False,
)
return {
"sentemb": last_hidden_states[:, 0, :],
"wordemb": last_hidden_states,
"all_layers": all_layers,
"attention_mask": attention_mask,
}
# TODO: Add BibTeX citation
_CITATION = """\
@inproceedings{xu-etal-2022-not,
title={Not All Errors are Equal: Learning Text Generation Metrics using Stratified Error Synthesis},
author={Xu, Wenda and Tuan, Yi-lin and Lu, Yujie and Saxon, Michael and Li, Lei and Wang, William Yang},
booktitle ={Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing},
month={dec},
year={2022},
url={https://arxiv.org/abs/2210.05035}
}
"""
_DESCRIPTION = """\
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality.
"""
_KWARGS_DESCRIPTION = """
Calculates how good are predictions given some references
Args:
predictions: list of candidate outputs
references: list of references
Returns:
{"mean_score": mean_score, "scores": scores}
Examples:
>>> import evaluate
>>> sescore = evaluate.load("xu1998hz/sescore")
>>> score = sescore.compute(
references=['sescore is a simple but effective next-generation text evaluation metric'],
predictions=['sescore is simple effective text evaluation metric for next generation']
)
"""
# TODO: Define external resources urls if needed
BAD_WORDS_URL = "http://url/to/external/resource/bad_words.txt"
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class SEScore(evaluate.Metric):
"""SEScore"""
def _info(self):
# TODO: Specifies the evaluate.EvaluationModuleInfo object
return evaluate.MetricInfo(
# This is the description that will appear on the modules page.
module_type="metric",
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
# This defines the format of each prediction and reference
features=datasets.Features({
'predictions': datasets.Value("string", id="sequence"),
'references': datasets.Value("string", id="sequence"),
}),
# Homepage of the module for documentation
homepage="http://module.homepage",
# Additional links to the codebase or references
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
reference_urls=["http://path.to.reference.url/new_module"]
)
def _download_and_prepare(self, dl_manager):
"""download SEScore checkpoints to compute the scores"""
# Download SEScore checkpoint
from comet import load_from_checkpoint
import os
from huggingface_hub import snapshot_download
# initialize roberta into str2encoder
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder
destination = snapshot_download(repo_id="xu1998hz/sescore_english_mt", revision="main")
self.scorer = load_from_checkpoint(f'{destination}/checkpoint/sescore_english_mt.ckpt')
def _compute(self, predictions, references, gpus=None, progress_bar=False):
if gpus is None:
gpus = 1 if torch.cuda.is_available() else 0
data = {"src": references, "mt": predictions}
data = [dict(zip(data, t)) for t in zip(*data.values())]
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar)
return {"mean_score": mean_score, "scores": scores}
|