Spaces:
Build error
Build error
add all modules
Browse files- README.md +2 -2
- __init__.py +38 -0
- requirements.txt +2 -1
- sescore.py +20 -12
README.md
CHANGED
@@ -5,9 +5,9 @@ datasets:
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
-
description: "
|
9 |
sdk: gradio
|
10 |
-
sdk_version:
|
11 |
app_file: app.py
|
12 |
pinned: false
|
13 |
---
|
|
|
5 |
tags:
|
6 |
- evaluate
|
7 |
- metric
|
8 |
+
description: "SEScore: a text generation evaluation metric"
|
9 |
sdk: gradio
|
10 |
+
sdk_version: 0.0.1
|
11 |
app_file: app.py
|
12 |
pinned: false
|
13 |
---
|
__init__.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import comet
|
2 |
+
from typing import Dict
|
3 |
+
import torch
|
4 |
+
from comet.encoders.base import Encoder
|
5 |
+
from comet.encoders.bert import BERTEncoder
|
6 |
+
from transformers import AutoModel, AutoTokenizer
|
7 |
+
|
8 |
+
class robertaEncoder(BERTEncoder):
|
9 |
+
def __init__(self, pretrained_model: str) -> None:
|
10 |
+
super(Encoder, self).__init__()
|
11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
|
12 |
+
self.model = AutoModel.from_pretrained(
|
13 |
+
pretrained_model, add_pooling_layer=False
|
14 |
+
)
|
15 |
+
self.model.encoder.output_hidden_states = True
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def from_pretrained(cls, pretrained_model: str) -> Encoder:
|
19 |
+
return robertaEncoder(pretrained_model)
|
20 |
+
|
21 |
+
def forward(
|
22 |
+
self, input_ids: torch.Tensor, attention_mask: torch.Tensor, **kwargs
|
23 |
+
) -> Dict[str, torch.Tensor]:
|
24 |
+
last_hidden_states, _, all_layers = self.model(
|
25 |
+
input_ids=input_ids,
|
26 |
+
attention_mask=attention_mask,
|
27 |
+
output_hidden_states=True,
|
28 |
+
return_dict=False,
|
29 |
+
)
|
30 |
+
return {
|
31 |
+
"sentemb": last_hidden_states[:, 0, :],
|
32 |
+
"wordemb": last_hidden_states,
|
33 |
+
"all_layers": all_layers,
|
34 |
+
"attention_mask": attention_mask,
|
35 |
+
}
|
36 |
+
|
37 |
+
# initialize roberta into str2encoder
|
38 |
+
comet.encoders.str2encoder['RoBERTa'] = robertaEncoder
|
requirements.txt
CHANGED
@@ -1 +1,2 @@
|
|
1 |
-
git+https://github.com/huggingface/evaluate@main
|
|
|
|
1 |
+
git+https://github.com/huggingface/evaluate@main
|
2 |
+
gdown
|
sescore.py
CHANGED
@@ -11,7 +11,7 @@
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
-
"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
@@ -28,7 +28,7 @@ year={2020}
|
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
-
|
32 |
"""
|
33 |
|
34 |
|
@@ -82,14 +82,22 @@ class SEScore(evaluate.Metric):
|
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
-
"""
|
86 |
-
#
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
def _compute(self, predictions, references):
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
}
|
|
|
11 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
+
"""SEScore: a text generation evaluation metric"""
|
15 |
|
16 |
import evaluate
|
17 |
import datasets
|
|
|
28 |
|
29 |
# TODO: Add description of the module here
|
30 |
_DESCRIPTION = """\
|
31 |
+
SEScore is an evaluation metric that trys to compute an overall score to measure text generation quality.
|
32 |
"""
|
33 |
|
34 |
|
|
|
82 |
)
|
83 |
|
84 |
def _download_and_prepare(self, dl_manager):
|
85 |
+
"""download SEScore checkpoints to compute the scores"""
|
86 |
+
# Download SEScore checkpoint
|
87 |
+
from comet import load_from_checkpoint
|
88 |
+
import gdown
|
89 |
+
import os
|
90 |
+
url = "https://drive.google.com/uc?id=1QgMP_Y4QCbvDMTeVacYt0J76OYvwWK9V&export=download&confirm=true"
|
91 |
+
output = 'sescore_download.gz'
|
92 |
+
gdown.download(url, output, quiet=False)
|
93 |
+
cmd = 'tar -xvf sescore_download.gz'
|
94 |
+
os.system(cmd)
|
95 |
+
self.scorer = load_from_checkpoint('sescore_download/zh_en/checkpoint/sescore_english.ckpt')
|
96 |
|
97 |
+
def _compute(self, sources, predictions, references, gpus=None, progress_bar=False):
|
98 |
+
if gpus is None:
|
99 |
+
gpus = 1 if torch.cuda.is_available() else 0
|
100 |
+
data = {"src": references, "mt": predictions}
|
101 |
+
data = [dict(zip(data, t)) for t in zip(*data.values())]
|
102 |
+
scores, mean_score = self.scorer.predict(data, gpus=gpus, progress_bar=progress_bar)
|
103 |
+
return {"mean_score": mean_score, "scores": scores}
|