Spaces:
Running
Running
File size: 4,445 Bytes
751936e f4973d4 751936e f4973d4 751936e f4973d4 751936e f4973d4 751936e f4973d4 751936e f4973d4 d10ecd7 f4973d4 d10ecd7 751936e f4973d4 751936e f4973d4 751936e f4973d4 751936e f4973d4 751936e d10ecd7 751936e d10ecd7 751936e d10ecd7 751936e 9495a4f f4973d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
"""
TODO: 繁体、简体、语种、
"""
import os
import json
from collections import Counter
from utils.text_util import is_chinese, get_zh_count, get_digit_count
from zhon.hanzi import punctuation as zh_punc
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
is_chinese(line.strip())]
def zh_iterator():
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
yield (chr(idx))
def get_coding_length(tokenizer, vocab, filter=None):
"""
计算编码长度。(有些中文汉字被解码成多个token)
"""
all_length = []
for word in vocab:
if len(word) > 1:
continue
if filter is not None and filter(word):
continue
tokens = tokenizer.encode(word)
all_length.append(len(tokens))
# if len(tokens.ids) > 1:
# if len(tokens) > 3:
# print(word, tokens)
dist_length = Counter(all_length)
mean_length = round(sum(all_length) / len(all_length), 2)
return dist_length, mean_length
def has_zh_punc(text):
"""
是否包含中文标点
"""
return any(ch in zh_punc for ch in text)
def get_space_count(text):
space_count = 0
for char in text:
if len(char.strip()) == 0:
space_count += 1
return space_count
def remove_special_char():
"""
:return:
"""
# bert词典有 ##开头的
# byteBPE词典有带空格的
# decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
pass
cache = {}
def iter_vocab(tokenizer, name="", from_cache=True):
if from_cache and name in cache:
return cache[name]
f_out = open(name + "_vocab.zh.jsonl", "w", encoding="utf-8")
zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
# symbol_count = 0
all_single_zh_tokens = set()
zh_symbol_count = 0
for token_id in range(tokenizer.vocab_size):
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
# tokenizer.convert_tokens_to_string(tokens)
if token is None: # 有些词典有空的id(不连续)
continue
if isinstance(token, bytes):
token = token.decode("utf-8", errors="ignore")
digit_count = get_digit_count(token)
zh_count = get_zh_count(decode_str)
space_count = get_space_count(decode_str)
f_out.write(json.dumps(
{"id": token_id,
"token": token,
"token_decode": decode_str,
"token_len": len(token),
"zh_count": zh_count,
"space_count": space_count,
"digit_count": digit_count,
"zh_symbol_count": zh_symbol_count,
},
ensure_ascii=False) + "\n"
)
if zh_count >= 1:
zh_token_count["total"] += 1
if zh_count > 1:
zh_token_count["中文多字"] += 1
else:
zh_token_count["中文单字"] += 1
all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
#
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_chinese(k))
# TODO: 繁体字,简体字
zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
result = {
"name": name,
"impl": str(tokenizer.__class__),
"vocab_size": tokenizer.vocab_size,
"中文汉字数": zh_token_count,
"中文标点数": zh_symbol_count,
"中文汉字编码长度均值": mean_length,
"中文汉字编码长度分布": json.dumps(dist_length),
}
cache[name] = result
return result
if __name__ == "__main__":
# test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k))
# test_coding_length(zh_punc)
# test_coding_length(zh_iterator())
from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
# from vocab.baichuan2 import tokenizer; name="baichuan2"
# from vocab.gpt_4 import tokenizer; name="gpt4"
print(iter_vocab(tokenizer, name=name))
|