xu-song commited on
Commit
f4973d4
1 Parent(s): ef8594d

add more tokenizers

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. README.md +9 -0
  3. app.py +1 -7
  4. app_v1.py +0 -196
  5. config.py +3 -0
  6. examples.py +37 -0
  7. requirements.txt +1 -1
  8. util.py +1 -1
  9. utils/_vocab.zh.jsonl +0 -1189
  10. utils/fn_util.py +0 -0
  11. utils/text_util.py +19 -1
  12. utils/vocab.jd.txt.v2 +0 -10268
  13. utils/zh_util.py +74 -24
  14. vocab/README.md +3 -0
  15. vocab/__init__.py +23 -4
  16. vocab/baichuan/Baichuan-7B/tokenization_baichuan.py +5 -5
  17. vocab/baichuan/__init__.py +9 -1
  18. vocab/baichuan/demo.py +4 -1
  19. vocab/baichuan/error.md +8 -0
  20. vocab/baichuan2/Baichuan2-7B-Chat/special_tokens_map.json +30 -0
  21. vocab/baichuan2/Baichuan2-7B-Chat/tokenization_baichuan.py +251 -0
  22. vocab/baichuan2/Baichuan2-7B-Chat/tokenizer.model +3 -0
  23. vocab/baichuan2/Baichuan2-7B-Chat/tokenizer_config.json +36 -0
  24. vocab/baichuan2/__init__.py +13 -2
  25. vocab/baichuan2/bug.py +22 -0
  26. vocab/baichuan2/encode.py +15 -0
  27. vocab/baichuan2/special_token.py +15 -0
  28. vocab/baichuan7b_chat/__init__.py +5 -0
  29. vocab/build_zh_vocab.py +0 -32
  30. vocab/chatglm2_6b/__init__.py +6 -0
  31. vocab/chatglm3_6b/__init__.py +9 -0
  32. vocab/chatglm_6b/README.md +1 -1
  33. vocab/chatglm_6b/__init__.py +9 -5
  34. vocab/chatglm_6b/{tokenizer → chatglm_6b}/config.json +0 -0
  35. vocab/chatglm_6b/{tokenizer → chatglm_6b}/ice_text.model +0 -0
  36. vocab/chatglm_6b/{tokenizer → chatglm_6b}/tokenization_chatglm.py +0 -0
  37. vocab/chatglm_6b/{tokenizer → chatglm_6b}/tokenizer_config.json +0 -0
  38. vocab/chinese_llama2/demo.py +6 -0
  39. vocab/chinese_llama2/load_by_gpt_neox.py +19 -0
  40. vocab/chinese_llama2/tokenizer/special_tokens_map.json +24 -0
  41. vocab/chinese_llama2/tokenizer/tokenizer.model +3 -0
  42. vocab/chinese_llama2/tokenizer/tokenizer_config.json +35 -0
  43. vocab/gpt_35_turbo/README.md +41 -0
  44. vocab/gpt_35_turbo/__init__.py +21 -8
  45. vocab/gpt_35_turbo/decode_test.py +6 -0
  46. vocab/gpt_35_turbo/test_arena.py +10 -0
  47. vocab/gpt_35_turbo/{test2.py → test_tiktoken.py} +1 -0
  48. vocab/gpt_35_turbo/{aaa.py → tiktoken_decode_test.py} +1 -0
  49. vocab/gpt_35_turbo/vocab.jsonl +0 -311
  50. vocab/internlm_chat_7b/__init__.py +1 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  vocab/belle_7b_2m/belle-7b-2m/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  vocab/bloom/tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  vocab/belle_7b_2m/belle-7b-2m/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  vocab/bloom/tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
+ vocab/
README.md CHANGED
@@ -17,3 +17,12 @@ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-
17
 
18
  ## ss
19
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  ## ss
19
 
20
+
21
+
22
+
23
+ ## 统计
24
+
25
+
26
+
27
+
28
+ https://huggingface.co/spaces/yenniejun/tokenizers-languages
app.py CHANGED
@@ -18,6 +18,7 @@
18
  - 词典支持下载,借用image下载的标签,
19
  - baichuan的单字数量怎么两万多个?
20
  - qwen: ValueError: Unclosed image token
 
21
 
22
  plots
23
 
@@ -188,12 +189,5 @@ with gr.Blocks(css="css/style.css", title="Tokenizer Arena") as demo:
188
 
189
 
190
  if __name__ == "__main__":
191
- print("http://127.0.0.1:7860/?tokenizer1=llama&tokenizer2=chinese_llama2&text=fdsjlk") # llama chinese_llama2
192
- print(
193
- "http://127.0.0.1:7860/?tokenizer1=chinese_llama&tokenizer2=chinese_llama2&text=fdsjlk") # llama chinese_llama2
194
- print("http://127.0.0.1:7860/?tokenizer1=baichuan&tokenizer2=baichuan2&text=sss") # baichuan 1 VS 2
195
- print("http://127.0.0.1:7860/?tokenizer1=bert&tokenizer2=clue&text=sss") # bert VS clue
196
- print("http://127.0.0.1:7860/?tokenizer1=clue&tokenizer2=kplug&text=sss") # clue VS kplug
197
- print("http://127.0.0.1:7860/?tokenizer1=baichuan&tokenizer2=baichuan2&text=sss") #
198
  # demo.queue(max_size=20).launch()
199
  demo.launch()
 
18
  - 词典支持下载,借用image下载的标签,
19
  - baichuan的单字数量怎么两万多个?
20
  - qwen: ValueError: Unclosed image token
21
+ - 路径修改为全path meta-llama/Llama-2-13b-hf
22
 
23
  plots
24
 
 
189
 
190
 
191
  if __name__ == "__main__":
 
 
 
 
 
 
 
192
  # demo.queue(max_size=20).launch()
193
  demo.launch()
app_v1.py DELETED
@@ -1,196 +0,0 @@
1
- # coding=utf-8
2
- # author: xusong
3
- # time: 2022/8/23 16:06
4
-
5
- """
6
-
7
- plots
8
-
9
- table
10
-
11
- ## related demo
12
- - [](http://text-processing.com/demo/tokenize/)
13
- - [gpt-tokenizer](https://gpt-tokenizer.dev/)
14
- - [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
15
- - [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
16
-
17
- ## 可视化
18
-
19
- [ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
20
- """
21
-
22
- import json
23
- import pandas as pd
24
- import gradio as gr
25
-
26
- from vocab import all_tokenizers, load_tokener
27
-
28
- # 显示空格:https://blog.csdn.net/liuxiao723846/article/details/118994673
29
- # 隐藏legend:
30
- css = """
31
- .space-show {white-space: pre-wrap;}
32
- .cell-wrap {white-space: pre-wrap;}
33
- .category-legend {display: none !important}
34
- """
35
-
36
- example_text = """Replace this text in the input field to see how tokenization works
37
- 中文测试:华为智能音箱发布:华为Sound X。維基百科由非營利組織──維基媒體基金會負責維持
38
- 数字测试:(10086 + 98) = 100184"""
39
-
40
- # llama chatglm_6b gpt_nexo_20b baichuan baichuan_7b
41
- examples = [
42
- # ["空格测试: 2个空格 8个空格", "llama", "chatglm_6b"], # chatglm 有blank_n,
43
- ["标点测试:,。!?;", "baichuan_7b", "llama"],
44
- ["标点测试:🦙", "baichuan_7b", "llama"],
45
- ]
46
-
47
-
48
- def tokenize(text, tokenizer_type, color_num=5):
49
- print(text, tokenizer_type)
50
- pos_tokens = []
51
- tokenizer = load_tokener(tokenizer_type)
52
- encoding = tokenizer.encode(text)
53
-
54
- table = []
55
-
56
- for idx, token_id in enumerate(encoding):
57
- decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
58
- pos_tokens.extend([(decode_text, str(idx % color_num))])
59
-
60
- # token "Byte": # 这是 utf-8编码吧?
61
- token = tokenizer.convert_ids_to_tokens([token_id])[0]
62
- if isinstance(token, bytes):
63
- try:
64
- token_str = token.decode("utf-8")
65
- except:
66
- token_str = token.decode("utf-8", errors="ignore")
67
- print("decode_error", token, token_str)
68
-
69
- token_bytes = token
70
- json_dumps = json.dumps(token_str)
71
- elif isinstance(token, str):
72
- token_str = token
73
- token_bytes = bytes(token_str, "utf-8")
74
- json_dumps = json.dumps(token_str)
75
- else:
76
- return
77
-
78
- table.append(
79
- {"TokenID": token_id,
80
- "Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
81
- "Text": decode_text, #
82
- # "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
83
- "Bytes": str(token_bytes),
84
- # "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
85
- }
86
- )
87
-
88
- table_df = pd.DataFrame(table)
89
- print(table)
90
- # print(table_df)
91
-
92
- return pos_tokens, table_df
93
-
94
-
95
- def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
96
- pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1)
97
- pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2)
98
- return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2
99
-
100
-
101
- def test_coding():
102
- bytes1 = b'\xe4\xb8\xad'
103
- print(bytes1) # b'\xe4\xb8\xad'
104
-
105
-
106
- with gr.Blocks(css=css) as demo:
107
- gr.HTML("""<h1 align="center">The Tokenizer Arena</h1>""")
108
- # links: https://www.coderstool.com/utf8-encoding-decoding
109
- #
110
-
111
-
112
-
113
- gr.Markdown("## Input Text")
114
- user_input = gr.Textbox(
115
- value=example_text,
116
- label="Input Text",
117
- lines=5
118
- ) # placeholder="Enter sentence here..."
119
-
120
- # submitBtn = gr.Button("生成回复", variant="primary")
121
-
122
- gr.Markdown("## Tokenization")
123
-
124
- # with gr.Row():
125
-
126
-
127
-
128
- # TODO: 图 表 压缩率
129
- with gr.Row():
130
- with gr.Column():
131
- tokenizer_type_1 = gr.Dropdown(
132
- all_tokenizers,
133
- value="llama",
134
- label="Tokenizer 1",
135
- )
136
- token_counter_1 = None # 计数器
137
- output_text_1 = gr.Highlightedtext(
138
- label="Tokens 1",
139
- show_legend=True,
140
- elem_classes="space-show"
141
- )
142
-
143
- with gr.Column():
144
- tokenizer_type_2 = gr.Dropdown(
145
- all_tokenizers,
146
- value="baichuan_7b",
147
- label="Tokenizer 2"
148
- )
149
- token_counter_2 = None # 计数器
150
- output_text_2 = gr.Highlightedtext(
151
- label="Tokens 2",
152
- show_legend=True,
153
- elem_classes="space-show"
154
- )
155
-
156
- with gr.Row():
157
- output_table_1 = gr.Dataframe(
158
- headers=["TokenID", "Byte", "Text"],
159
- datatype=["str", "str", "str"],
160
- # elem_classes="space-show", # 给���个Dataframe加这个css不起作用,因此直接修改cell-wrap
161
- )
162
- output_table_2 = gr.Dataframe(
163
- headers=["TokenID", "Token", "Text"],
164
- datatype=["str", "str", "str"],
165
- )
166
-
167
- user_input.change(tokenize,
168
- [user_input, tokenizer_type_1],
169
- [output_text_1, output_table_1])
170
- tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1], [output_text_1, output_table_1])
171
-
172
- user_input.change(tokenize,
173
- [user_input, tokenizer_type_2],
174
- [output_text_2, output_table_2])
175
-
176
- tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2], [output_text_2, output_table_2])
177
-
178
- gr.Examples(
179
- examples,
180
- [user_input, tokenizer_type_1, tokenizer_type_2],
181
- [output_text_1, output_table_1, output_text_2, output_table_2],
182
- tokenize_pair,
183
- cache_examples=True,
184
- )
185
-
186
- # submitBtn.click(tokenize, [user_input, tokenizer_type], outputs,
187
- # show_progress=True)
188
-
189
- # examples=[
190
- # ["What a beautiful morning for a walk!"],
191
- # ["It was the best of times, it was the worst of times."],
192
- # ["多个空格 It ss was the best of times, it was the worst of times."],
193
- # ]
194
-
195
- if __name__ == "__main__":
196
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+
2
+
3
+ USE_REMOTE = False
examples.py CHANGED
@@ -17,6 +17,43 @@ examples = {
17
 
18
  }
19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
  def example_fn(example_idx):
22
  return examples["en"][example_idx]
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
  }
19
 
20
+ more_examples = [
21
+ # bert VS clue
22
+ # bert系列
23
+ ("bert_base_cased", "bert_base_uncased", ""), # # clue VS kplug, bert VS clue
24
+
25
+ # llama系列 (基于sentencepiece)
26
+ ("baichuan", "baichuan2", "baichuan2支持多空格 ,多个换行\n\n\n,do not add dummy prefix as Baichuan1"),
27
+ ("llama", "baichuan2", "baichuan2支持多空格 ,多个换行\n\n"),
28
+ ("llama", "chinese_llama2", ""),
29
+ ("chinese_llama", "chinese_llama2", ""),
30
+
31
+ # glm系列 (基于sentencepiece)
32
+ ("glm", "chatglm1", ""),
33
+ ("chatglm1", "chatglm2", ""),
34
+
35
+ # gpt2系列
36
+ ("gpt2", "moss", ""),
37
+ ("", "", ""),
38
+
39
+ # openai系列 (tiktoken)
40
+ ("qwen", "gpt_35_turbo", ""),
41
+
42
+
43
+ ]
44
+
45
 
46
  def example_fn(example_idx):
47
  return examples["en"][example_idx]
48
+
49
+
50
+ def get_more_example():
51
+ import urllib.parse
52
+ url_prefix = "https://huggingface.co/spaces/eson/tokenizer-arena"
53
+ for tokenizer1, tokenizer2, text in more_examples:
54
+ full_url = f'{url_prefix}?tokenizer1={tokenizer1}&tokenizer2={tokenizer2}&text={urllib.parse.quote(text)}'
55
+ print(full_url)
56
+
57
+
58
+ if __name__ == "__main__":
59
+ get_more_example()
requirements.txt CHANGED
@@ -1,4 +1,4 @@
1
- transformers>=4.21.1
2
  sentencepiece
3
  tiktoken
4
  icetk
 
1
+ transformers==4.33.1
2
  sentencepiece
3
  tiktoken
4
  icetk
util.py CHANGED
@@ -25,7 +25,7 @@ def tokenize(text, tokenizer_type, color_num=5):
25
  pos_tokens.extend([(decode_text, str(idx % color_num))])
26
 
27
  # token "Byte": # 这是 utf-8编码吧?
28
- token = tokenizer.convert_ids_to_tokens([token_id])[0]
29
  if isinstance(token, bytes):
30
  try:
31
  token_str = token.decode("utf-8")
 
25
  pos_tokens.extend([(decode_text, str(idx % color_num))])
26
 
27
  # token "Byte": # 这是 utf-8编码吧?
28
+ token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
29
  if isinstance(token, bytes):
30
  try:
31
  token_str = token.decode("utf-8")
utils/_vocab.zh.jsonl DELETED
@@ -1,1189 +0,0 @@
1
- {"id": 529, "token": "’", "type": "中文标点"}
2
- {"id": 753, "token": "’s", "type": "中文标点"}
3
- {"id": 863, "token": "”", "type": "中文标点"}
4
- {"id": 1054, "token": " “", "type": "中文标点"}
5
- {"id": 1389, "token": " –", "type": "中文标点"}
6
- {"id": 1431, "token": "’t", "type": "中文标点"}
7
- {"id": 1811, "token": "。", "type": "中文标点"}
8
- {"id": 1981, "token": "…", "type": "中文标点"}
9
- {"id": 2001, "token": " —", "type": "中文标点"}
10
- {"id": 2029, "token": ".”", "type": "中文标点"}
11
- {"id": 2118, "token": "“", "type": "中文标点"}
12
- {"id": 2345, "token": "—", "type": "中文标点"}
13
- {"id": 2476, "token": ",”", "type": "中文标点"}
14
- {"id": 2950, "token": ".”\n\n", "type": "中文标点"}
15
- {"id": 3207, "token": "’re", "type": "中文标点"}
16
- {"id": 3451, "token": " ‘", "type": "中文标点"}
17
- {"id": 3490, "token": "。\n\n", "type": "中文标点"}
18
- {"id": 3922, "token": ",", "type": "中文标点"}
19
- {"id": 4070, "token": "’ve", "type": "中文标点"}
20
- {"id": 4235, "token": "–", "type": "中文标点"}
21
- {"id": 4344, "token": "’m", "type": "中文标点"}
22
- {"id": 4696, "token": " …", "type": "中文标点"}
23
- {"id": 4805, "token": "’ll", "type": "中文标点"}
24
- {"id": 5232, "token": ":", "type": "中文标点"}
25
- {"id": 5486, "token": "、", "type": "中文标点"}
26
- {"id": 5551, "token": "…\n\n", "type": "中文标点"}
27
- {"id": 6447, "token": "!", "type": "中文标点"}
28
- {"id": 7070, "token": "’d", "type": "中文标点"}
29
- {"id": 7663, "token": "”\n\n", "type": "中文标点"}
30
- {"id": 7705, "token": ")", "type": "中文标点"}
31
- {"id": 8107, "token": "年", "type": "中文单字"}
32
- {"id": 8713, "token": "——", "type": "中文标点"}
33
- {"id": 9039, "token": "数", "type": "中文单字"}
34
- {"id": 9080, "token": "日", "type": "中文单字"}
35
- {"id": 9174, "token": "。\n", "type": "中文标点"}
36
- {"id": 9520, "token": "”,", "type": "中文标点"}
37
- {"id": 9554, "token": "的", "type": "中文单字"}
38
- {"id": 9787, "token": " ·", "type": "中文标点"}
39
- {"id": 9953, "token": "月", "type": "中文单字"}
40
- {"id": 10110, "token": "(", "type": "中文标点"}
41
- {"id": 10378, "token": "“I", "type": "中文标点"}
42
- {"id": 10416, "token": " […", "type": "中文标点"}
43
- {"id": 10646, "token": "」", "type": "中文标点"}
44
- {"id": 11144, "token": "【", "type": "中文标点"}
45
- {"id": 11199, "token": "】", "type": "中文标点"}
46
- {"id": 11453, "token": "”.", "type": "中文标点"}
47
- {"id": 11571, "token": "?", "type": "中文标点"}
48
- {"id": 11883, "token": "用", "type": "中文单字"}
49
- {"id": 12291, "token": " …\n\n", "type": "中文标点"}
50
- {"id": 12671, "token": "?”", "type": "中文标点"}
51
- {"id": 12996, "token": " […]\n\n", "type": "中文标点"}
52
- {"id": 13153, "token": "成", "type": "中文单字"}
53
- {"id": 13177, "token": "「", "type": "中文标点"}
54
- {"id": 13372, "token": "名", "type": "中文单字"}
55
- {"id": 13646, "token": "时", "type": "中文单字"}
56
- {"id": 14260, "token": "·", "type": "中文标点"}
57
- {"id": 14305, "token": "“The", "type": "中文标点"}
58
- {"id": 14336, "token": "‘", "type": "中文标点"}
59
- {"id": 14382, "token": "……", "type": "中文标点"}
60
- {"id": 14558, "token": "件", "type": "中文单字"}
61
- {"id": 14639, "token": ".’", "type": "中文标点"}
62
- {"id": 15085, "token": "“We", "type": "中文标点"}
63
- {"id": 15120, "token": "一", "type": "中文单字"}
64
- {"id": 15179, "token": " „", "type": "中文标点"}
65
- {"id": 15225, "token": "请", "type": "中文单字"}
66
- {"id": 15397, "token": "”.\n\n", "type": "中文标点"}
67
- {"id": 16325, "token": "中", "type": "中文单字"}
68
- {"id": 16423, "token": "据", "type": "中文单字"}
69
- {"id": 16616, "token": "?”\n\n", "type": "中文标点"}
70
- {"id": 16620, "token": "————", "type": "中文标点"}
71
- {"id": 16882, "token": "码", "type": "中文单字"}
72
- {"id": 16937, "token": "不", "type": "中文单字"}
73
- {"id": 17039, "token": "新", "type": "中文单字"}
74
- {"id": 17161, "token": "文", "type": "中文单字"}
75
- {"id": 17223, "token": "—and", "type": "中文标点"}
76
- {"id": 17297, "token": "下", "type": "中文单字"}
77
- {"id": 17620, "token": "分", "type": "中文单字"}
78
- {"id": 17701, "token": "入", "type": "中文单字"}
79
- {"id": 17792, "token": "人", "type": "中文单字"}
80
- {"id": 17818, "token": "“It", "type": "中文标点"}
81
- {"id": 17860, "token": "功", "type": "中文单字"}
82
- {"id": 17905, "token": "上", "type": "中文单字"}
83
- {"id": 17982, "token": "户", "type": "中文单字"}
84
- {"id": 18171, "token": "!\n\n", "type": "中文标点"}
85
- {"id": 18184, "token": "为", "type": "中文单字"}
86
- {"id": 18217, "token": " ’", "type": "中文标点"}
87
- {"id": 18319, "token": "!”", "type": "中文标点"}
88
- {"id": 18363, "token": "间", "type": "中文单字"}
89
- {"id": 18476, "token": "号", "type": "中文单字"}
90
- {"id": 18655, "token": "取", "type": "中文单字"}
91
- {"id": 18904, "token": "回", "type": "中文单字"}
92
- {"id": 19000, "token": "在", "type": "��文单字"}
93
- {"id": 19047, "token": "页", "type": "中文单字"}
94
- {"id": 19066, "token": "。\n\n\n\n", "type": "中文标点"}
95
- {"id": 19113, "token": "字", "type": "中文单字"}
96
- {"id": 19361, "token": "有", "type": "中文单字"}
97
- {"id": 19483, "token": "个", "type": "中文单字"}
98
- {"id": 19524, "token": " ”", "type": "中文标点"}
99
- {"id": 19653, "token": "成功", "type": "中文多字"}
100
- {"id": 19967, "token": "作", "type": "中文单字"}
101
- {"id": 20145, "token": "】【", "type": "中文标点"}
102
- {"id": 20182, "token": "’,", "type": "中文标点"}
103
- {"id": 20379, "token": "示", "type": "中文单字"}
104
- {"id": 20600, "token": "用户", "type": "中文多字"}
105
- {"id": 20675, "token": "数据", "type": "中文多字"}
106
- {"id": 20834, "token": "出", "type": "中文单字"}
107
- {"id": 21043, "token": "是", "type": "中文单字"}
108
- {"id": 21060, "token": "….", "type": "中文标点"}
109
- {"id": 21082, "token": "时间", "type": "中文多字"}
110
- {"id": 21388, "token": "失", "type": "中文单字"}
111
- {"id": 21405, "token": "表", "type": "中文单字"}
112
- {"id": 21418, "token": "除", "type": "中文单字"}
113
- {"id": 21601, "token": "加", "type": "中文单字"}
114
- {"id": 21809, "token": "败", "type": "中文单字"}
115
- {"id": 21909, "token": "~", "type": "中文标点"}
116
- {"id": 21990, "token": "生", "type": "中文单字"}
117
- {"id": 22023, "token": "信", "type": "中文单字"}
118
- {"id": 22117, "token": "’est", "type": "中文标点"}
119
- {"id": 22238, "token": "类", "type": "中文单字"}
120
- {"id": 22324, "token": "置", "type": "中文单字"}
121
- {"id": 22416, "token": "—the", "type": "中文标点"}
122
- {"id": 22649, "token": "理", "type": "中文单字"}
123
- {"id": 22656, "token": "本", "type": "中文单字"}
124
- {"id": 22820, "token": "失败", "type": "中文多字"}
125
- {"id": 23018, "token": "息", "type": "中文单字"}
126
- {"id": 23039, "token": "行", "type": "中文单字"}
127
- {"id": 23187, "token": "定", "type": "中文单字"}
128
- {"id": 23189, "token": ",’", "type": "中文标点"}
129
- {"id": 23226, "token": "改", "type": "中文单字"}
130
- {"id": 23249, "token": " ", "type": "中文标点"}
131
- {"id": 23530, "token": "市", "type": "中文单字"}
132
- {"id": 23538, "token": "期", "type": "中文单字"}
133
- {"id": 23897, "token": "以", "type": "中文单字"}
134
- {"id": 23951, "token": "修", "type": "中文单字"}
135
- {"id": 23954, "token": ")\n", "type": "中文标点"}
136
- {"id": 24186, "token": "元", "type": "中文单字"}
137
- {"id": 24273, "token": "方", "type": "中文单字"}
138
- {"id": 24535, "token": "’.", "type": "中文标点"}
139
- {"id": 24580, "token": "录", "type": "中文单字"}
140
- {"id": 24775, "token": "区", "type": "中文单字"}
141
- {"id": 24946, "token": "单", "type": "中文单字"}
142
- {"id": 25010, "token": "�除", "type": "中文多字"}
143
- {"id": 25129, "token": "位", "type": "中文单字"}
144
- {"id": 25287, "token": "型", "type": "中文单字"}
145
- {"id": 25333, "token": "法", "type": "中文单字"}
146
- {"id": 25336, "token": "县", "type": "中文单字"}
147
- {"id": 25359, "token": "存", "type": "中文单字"}
148
- {"id": 25446, "token": "品", "type": "中文单字"}
149
- {"id": 25580, "token": "前", "type": "中文单字"}
150
- {"id": 25666, "token": "称", "type": "中文单字"}
151
- {"id": 25758, "token": "!”\n\n", "type": "中文标点"}
152
- {"id": 26016, "token": ";", "type": "中文标点"}
153
- {"id": 26062, "token": "�回", "type": "中文多字"}
154
- {"id": 26123, "token": "》", "type": "中文标点"}
155
- {"id": 26130, "token": "注", "type": "中文单字"}
156
- {"id": 26239, "token": "修改", "type": "中文多字"}
157
- {"id": 26592, "token": "值", "type": "中文单字"}
158
- {"id": 26794, "token": "输", "type": "中文单字"}
159
- {"id": 26892, "token": "建", "type": "中文单字"}
160
- {"id": 27179, "token": " (“", "type": "中文标点"}
161
- {"id": 27327, "token": "能", "type": "中文单字"}
162
- {"id": 27384, "token": "大", "type": "中文单字"}
163
- {"id": 27452, "token": "例", "type": "中文单字"}
164
- {"id": 27479, "token": "度", "type": "中文单字"}
165
- {"id": 27704, "token": "始", "type": "中文单字"}
166
- {"id": 27948, "token": "?\n\n", "type": "中文标点"}
167
- {"id": 27996, "token": "文件", "type": "中文多字"}
168
- {"id": 28037, "token": "到", "type": "中文单字"}
169
- {"id": 28038, "token": "《", "type": "中文标点"}
170
- {"id": 28190, "token": "面", "type": "中文单字"}
171
- {"id": 28359, "token": "�数", "type": "中文多字"}
172
- {"id": 28466, "token": "载", "type": "中文单字"}
173
- {"id": 28469, "token": "信息", "type": "中文多字"}
174
- {"id": 28542, "token": "点", "type": "中文单字"}
175
- {"id": 28587, "token": "��取", "type": "中文多字"}
176
- {"id": 28624, "token": " […]", "type": "中文标点"}
177
- {"id": 28741, "token": "密", "type": "中文单字"}
178
- {"id": 28833, "token": "动", "type": "中文单字"}
179
- {"id": 28873, "token": "果", "type": "中文单字"}
180
- {"id": 28918, "token": "、\n\n", "type": "中文标点"}
181
- {"id": 28966, "token": ")\n\n", "type": "中文标点"}
182
- {"id": 29096, "token": "—a", "type": "中文标点"}
183
- {"id": 29129, "token": "图", "type": "中文单字"}
184
- {"id": 29172, "token": "提", "type": "中文单字"}
185
- {"id": 29391, "token": "发", "type": "中文单字"}
186
- {"id": 29411, "token": ":\n", "type": "中文标点"}
187
- {"id": 29430, "token": "式", "type": "中文单字"}
188
- {"id": 29472, "token": "—\n\n", "type": "中文标点"}
189
- {"id": 29504, "token": "国", "type": "中文单字"}
190
- {"id": 29681, "token": "」\n\n", "type": "中文标点"}
191
- {"id": 29706, "token": "删除", "type": "中文多字"}
192
- {"id": 29719, "token": "’un", "type": "中文标点"}
193
- {"id": 29741, "token": "登", "type": "中文单字"}
194
- {"id": 29826, "token": "错", "type": "中文单字"}
195
- {"id": 30019, "token": "。。", "type": "中文标点"}
196
- {"id": 30046, "token": "者", "type": "中文单字"}
197
- {"id": 30051, "token": "认", "type": "中文单字"}
198
- {"id": 30156, "token": "误", "type": "中文单字"}
199
- {"id": 30177, "token": "接", "type": "中文单字"}
200
- {"id": 30184, "token": "’\n\n", "type": "中文标点"}
201
- {"id": 30356, "token": "关", "type": "中文单字"}
202
- {"id": 30358, "token": "重", "type": "中文单字"}
203
- {"id": 30537, "token": "第", "type": "中文单字"}
204
- {"id": 30590, "token": "地", "type": "中文单字"}
205
- {"id": 30624, "token": "如", "type": "中文单字"}
206
- {"id": 30697, "token": "————————", "type": "中文标点"}
207
- {"id": 30735, "token": "设", "type": "中文单字"}
208
- {"id": 30832, "token": "目", "type": "中文单字"}
209
- {"id": 30867, "token": "开", "type": "中文单字"}
210
- {"id": 30926, "token": "事", "type": "中文单字"}
211
- {"id": 31041, "token": "�数", "type": "中文多字"}
212
- {"id": 31091, "token": "名称", "type": "中文多字"}
213
- {"id": 31378, "token": "“This", "type": "中文标点"}
214
- {"id": 31472, "token": " :", "type": "中文标点"}
215
- {"id": 31540, "token": "可", "type": "中文单字"}
216
- {"id": 31634, "token": "要", "type": "中文单字"}
217
- {"id": 31640, "token": "代", "type": "中文单字"}
218
- {"id": 31809, "token": "小", "type": "中文单字"}
219
- {"id": 31867, "token": "选", "type": "中文单字"}
220
- {"id": 31944, "token": "标", "type": "中文单字"}
221
- {"id": 31958, "token": "明", "type": "中文单字"}
222
- {"id": 31968, "token": "编", "type": "中文单字"}
223
- {"id": 32018, "token": "求", "type": "中文单字"}
224
- {"id": 32218, "token": "列", "type": "中文单字"}
225
- {"id": 32239, "token": "网", "type": "中文单字"}
226
- {"id": 32296, "token": "输入", "type": "中文多字"}
227
- {"id": 32307, "token": "万", "type": "中文单字"}
228
- {"id": 32335, "token": "最", "type": "中文单字"}
229
- {"id": 32351, "token": "!!", "type": "中文标点"}
230
- {"id": 32438, "token": "�建", "type": "中文多字"}
231
- {"id": 32626, "token": "返回", "type": "中文多字"}
232
- {"id": 32648, "token": "器", "type": "中文单字"}
233
- {"id": 32938, "token": "所", "type": "中文单字"}
234
- {"id": 32943, "token": "内", "type": "中文单字"}
235
- {"id": 33005, "token": "类型", "type": "中文多字"}
236
- {"id": 33014, "token": "体", "type": "中文单字"}
237
- {"id": 33035, "token": "通", "type": "中文单字"}
238
- {"id": 33052, "token": "务", "type": "中文单字"}
239
- {"id": 33091, "token": "此", "type": "中文单字"}
240
- {"id": 33122, "token": "商", "type": "中文单字"}
241
- {"id": 33144, "token": "序", "type": "中文单字"}
242
- {"id": 33200, "token": "错误", "type": "中文多字"}
243
- {"id": 33208, "token": "化", "type": "中文单字"}
244
- {"id": 33420, "token": "消", "type": "中文单字"}
245
- {"id": 33476, "token": "否", "type": "中文单字"}
246
- {"id": 33563, "token": "保", "type": "中文单字"}
247
- {"id": 33611, "token": "”)", "type": "中文标点"}
248
- {"id": 33655, "token": "使", "type": "中文单字"}
249
- {"id": 33671, "token": "次", "type": "中文单字"}
250
- {"id": 33672, "token": "“You", "type": "中文标点"}
251
- {"id": 33748, "token": "机", "type": "中文单字"}
252
- {"id": 33764, "token": "对", "type": "中文单字"}
253
- {"id": 33765, "token": "参数", "type": "中文多字"}
254
- {"id": 33777, "token": "’é", "type": "中文标点"}
255
- {"id": 33857, "token": "量", "type": "中文单字"}
256
- {"id": 33904, "token": "函数", "type": "中文多字"}
257
- {"id": 33967, "token": "密码", "type": "中文多字"}
258
- {"id": 33976, "token": "查", "type": "中文单字"}
259
- {"id": 34045, "token": "。”", "type": "中文标点"}
260
- {"id": 34048, "token": "部", "type": "中文单字"}
261
- {"id": 34171, "token": "性", "type": "中文单字"}
262
- {"id": 34208, "token": "和", "type": "中文单字"}
263
- {"id": 34226, "token": "更", "type": "中文单字"}
264
- {"id": 34547, "token": "后", "type": "中文单字"}
265
- {"id": 34577, "token": "证", "type": "中文单字"}
266
- {"id": 34676, "token": " 【", "type": "中文标点"}
267
- {"id": 34690, "token": "”,", "type": "中文标点"}
268
- {"id": 34972, "token": "题", "type": "中文单字"}
269
- {"id": 35056, "token": "确", "type": "中文单字"}
270
- {"id": 35083, "token": "格", "type": "中文单字"}
271
- {"id": 35147, "token": ".“", "type": "中文标点"}
272
- {"id": 35192, "token": ".—", "type": "中文标点"}
273
- {"id": 35284, "token": ".”\n\n\n\n", "type": "中文标点"}
274
- {"id": 35287, "token": "了", "type": "中文单字"}
275
- {"id": 35304, "token": "���", "type": "中文单字"}
276
- {"id": 35330, "token": "金", "type": "中文单字"}
277
- {"id": 35417, "token": "公", "type": "中文单字"}
278
- {"id": 35424, "token": "午", "type": "中文单字"}
279
- {"id": 35757, "token": "円", "type": "中文单字"}
280
- {"id": 35816, "token": "“There", "type": "中文标点"}
281
- {"id": 35818, "token": "片", "type": "中文单字"}
282
- {"id": 35894, "token": "空", "type": "中文单字"}
283
- {"id": 35959, "token": "请求", "type": "中文多字"}
284
- {"id": 36225, "token": "��加", "type": "中文多字"}
285
- {"id": 36319, "token": ".’\n\n", "type": "中文标点"}
286
- {"id": 36343, "token": "态", "type": "中文单字"}
287
- {"id": 36515, "token": "登录", "type": "中文多字"}
288
- {"id": 36577, "token": "’une", "type": "中文标点"}
289
- {"id": 36651, "token": "管", "type": "中文单字"}
290
- {"id": 36668, "token": "主", "type": "中文单字"}
291
- {"id": 36761, "token": "』", "type": "中文标点"}
292
- {"id": 36827, "token": "天", "type": "中文单字"}
293
- {"id": 36896, "token": "、「", "type": "中文标点"}
294
- {"id": 37026, "token": "自", "type": "中文单字"}
295
- {"id": 37046, "token": "我", "type": "中文单字"}
296
- {"id": 37087, "token": "全", "type": "中文单字"}
297
- {"id": 37271, "token": "今", "type": "中文单字"}
298
- {"id": 37395, "token": "页面", "type": "中文多字"}
299
- {"id": 37507, "token": "来", "type": "中文单字"}
300
- {"id": 37648, "token": "��作", "type": "中文多字"}
301
- {"id": 37656, "token": "正", "type": "中文单字"}
302
- {"id": 37687, "token": "说", "type": "中文单字"}
303
- {"id": 37689, "token": "意", "type": "中文单字"}
304
- {"id": 37705, "token": "送", "type": "中文单字"}
305
- {"id": 37729, "token": "容", "type": "中文单字"}
306
- {"id": 37767, "token": "已", "type": "中文单字"}
307
- {"id": 37985, "token": "结", "type": "中文单字"}
308
- {"id": 38087, "token": ":“", "type": "中文标点"}
309
- {"id": 38093, "token": "会", "type": "中文单字"}
310
- {"id": 38129, "token": "使用", "type": "中文多字"}
311
- {"id": 38232, "token": "。</", "type": "中文标点"}
312
- {"id": 38365, "token": "。\r\n", "type": "中文标点"}
313
- {"id": 38542, "token": "—but", "type": "中文标点"}
314
- {"id": 38574, "token": "段", "type": "中文单字"}
315
- {"id": 38609, "token": "�认", "type": "中文多字"}
316
- {"id": 38684, "token": "“If", "type": "中文标点"}
317
- {"id": 38741, "token": "。,", "type": "中文标点"}
318
- {"id": 38743, "token": "计", "type": "中文单字"}
319
- {"id": 39045, "token": ",请", "type": "中文多字"}
320
- {"id": 39084, "token": "源", "type": "中文单字"}
321
- {"id": 39135, "token": "色", "type": "中文单字"}
322
- {"id": 39177, "token": "時", "type": "中文单字"}
323
- {"id": 39209, "token": "交", "type": "中文单字"}
324
- {"id": 39276, "token": "系", "type": "中文单字"}
325
- {"id": 39282, "token": "过", "type": "中文单字"}
326
- {"id": 39312, "token": "电", "type": "中文单字"}
327
- {"id": 39365, "token": "询", "type": "中文单字"}
328
- {"id": 39404, "token": "符", "type": "中文单字"}
329
- {"id": 39425, "token": "…………", "type": "中文标点"}
330
- {"id": 39442, "token": "未", "type": "中文单字"}
331
- {"id": 39607, "token": "程", "type": "中文单字"}
332
- {"id": 40053, "token": "常", "type": "中文单字"}
333
- {"id": 40089, "token": "条", "type": "中文单字"}
334
- {"id": 40195, "token": "下", "type": "中文单字"}
335
- {"id": 40265, "token": "当", "type": "中文单字"}
336
- {"id": 40452, "token": "管理", "type": "中文多字"}
337
- {"id": 40466, "token": "��态", "type": "中文多字"}
338
- {"id": 40474, "token": "情", "type": "中文单字"}
339
- {"id": 40526, "token": "口", "type": "中文单字"}
340
- {"id": 40565, "token": "“He", "type": "中文标点"}
341
- {"id": 40702, "token": "’S", "type": "中文标点"}
342
- {"id": 40753, "token": "’a", "type": "中文标点"}
343
- {"id": 40862, "token": "合", "type": "中文单字"}
344
- {"id": 41007, "token": "方法", "type": "中文多字"}
345
- {"id": 41053, "token": "车", "type": "中文单字"}
346
- {"id": 41073, "token": "实", "type": "中文单字"}
347
- {"id": 41127, "token": "组", "type": "中文单字"}
348
- {"id": 41128, "token": "—that", "type": "中文标点"}
349
- {"id": 41190, "token": "操作", "type": "中文多字"}
350
- {"id": 41354, "token": "’.\n\n", "type": "中文标点"}
351
- {"id": 41401, "token": "版", "type": "中文单字"}
352
- {"id": 41642, "token": "周", "type": "中文单字"}
353
- {"id": 41723, "token": "址", "type": "中文单字"}
354
- {"id": 41771, "token": "获取", "type": "中文多字"}
355
- {"id": 41827, "token": ":\"", "type": "中文标点"}
356
- {"id": 41914, "token": "记", "type": "中文单字"}
357
- {"id": 41920, "token": "二", "type": "中文单字"}
358
- {"id": 42016, "token": "同", "type": "中文单字"}
359
- {"id": 42052, "token": "业", "type": "中文单字"}
360
- {"id": 42081, "token": "权", "type": "中文单字"}
361
- {"id": 42246, "token": "其", "type": "中文单字"}
362
- {"id": 42275, "token": " ,", "type": "中文标点"}
363
- {"id": 42399, "token": "进", "type": "中文单字"}
364
- {"id": 42421, "token": "试", "type": "中文单字"}
365
- {"id": 42462, "token": "验", "type": "中文单字"}
366
- {"id": 42506, "token": "料", "type": "中文单字"}
367
- {"id": 42553, "token": ",\n", "type": "中文标点"}
368
- {"id": 42605, "token": ",“", "type": "中文标点"}
369
- {"id": 42783, "token": "传", "type": "中文单字"}
370
- {"id": 43032, "token": "述", "type": "中文单字"}
371
- {"id": 43167, "token": "集", "type": "中文单字"}
372
- {"id": 43240, "token": "多", "type": "中文单字"}
373
- {"id": 43292, "token": "无", "type": "中文单字"}
374
- {"id": 43323, "token": "员", "type": "中文单字"}
375
- {"id": 43378, "token": "报", "type": "中文单字"}
376
- {"id": 43444, "token": " (", "type": "中文标点"}
377
- {"id": 43511, "token": "他", "type": "中文单字"}
378
- {"id": 43568, "token": "無", "type": "中文单字"}
379
- {"id": 43741, "token": "‘s", "type": "中文标点"}
380
- {"id": 43955, "token": "添加", "type": "中文多字"}
381
- {"id": 44130, "token": "“What", "type": "中文标点"}
382
- {"id": 44309, "token": "服", "type": "中文单字"}
383
- {"id": 44368, "token": "线", "type": "中文单字"}
384
- {"id": 44388, "token": "这", "type": "中文单字"}
385
- {"id": 44416, "token": "制", "type": "中文单字"}
386
- {"id": 44529, "token": "  ", "type": "中文标点"}
387
- {"id": 44603, "token": "—it", "type": "中文标点"}
388
- {"id": 44620, "token": "『", "type": "中文标点"}
389
- {"id": 44689, "token": "的", "type": "中文单字"}
390
- {"id": 44816, "token": "�始", "type": "中文多字"}
391
- {"id": 44820, "token": "�单", "type": "中文多字"}
392
- {"id": 44915, "token": "内容", "type": "中文多字"}
393
- {"id": 44996, "token": "’il", "type": "中文标点"}
394
- {"id": 45018, "token": "设置", "type": "中文多字"}
395
- {"id": 45059, "token": "生成", "type": "中文多字"}
396
- {"id": 45163, "token": "将", "type": "中文单字"}
397
- {"id": 45191, "token": "状态", "type": "中文多字"}
398
- {"id": 45221, "token": "=”", "type": "中文标点"}
399
- {"id": 45258, "token": "?’", "type": "中文标点"}
400
- {"id": 45277, "token": "列表", "type": "中文多字"}
401
- {"id": 45390, "token": "处", "type": "中文单字"}
402
- {"id": 45460, "token": "】\n\n", "type": "中文标点"}
403
- {"id": 45472, "token": "输", "type": "中文单字"}
404
- {"id": 45516, "token": "!\");\n", "type": "中文标点"}
405
- {"id": 45631, "token": " 「", "type": "中文标点"}
406
- {"id": 45736, "token": "高", "type": "中文单字"}
407
- {"id": 45829, "token": "子", "type": "中文单字"}
408
- {"id": 45893, "token": "道", "type": "中文单字"}
409
- {"id": 45934, "token": "�述", "type": "中文多字"}
410
- {"id": 46028, "token": "章", "type": "中文单字"}
411
- {"id": 46031, "token": "字段", "type": "中文多字"}
412
- {"id": 46034, "token": "手", "type": "中文单字"}
413
- {"id": 46056, "token": "库", "type": "中文单字"}
414
- {"id": 46091, "token": "三", "type": "中文单字"}
415
- {"id": 46093, "token": "….\n\n", "type": "中文标点"}
416
- {"id": 46233, "token": "“In", "type": "中文标点"}
417
- {"id": 46239, "token": "提示", "type": "中文多字"}
418
- {"id": 46281, "token": "从", "type": "中文单字"}
419
- {"id": 46456, "token": "支", "type": "中文单字"}
420
- {"id": 46690, "token": "“They", "type": "中文标点"}
421
- {"id": 46729, "token": "家", "type": "中文单字"}
422
- {"id": 46885, "token": "日期", "type": "中文多字"}
423
- {"id": 46961, "token": "长", "type": "中文单字"}
424
- {"id": 47000, "token": "付", "type": "中文单字"}
425
- {"id": 47012, "token": "获取", "type": "中文多字"}
426
- {"id": 47018, "token": "秒", "type": "中文单字"}
427
- {"id": 47030, "token": "图片", "type": "中文多字"}
428
- {"id": 47043, "token": "商品", "type": "中文多字"}
429
- {"id": 47095, "token": "路", "type": "中文单字"}
430
- {"id": 47200, "token": "代码", "type": "中文多字"}
431
- {"id": 47406, "token": "完", "type": "中文单字"}
432
- {"id": 47436, "token": ":</", "type": "中文标点"}
433
- {"id": 47523, "token": "象", "type": "中文单字"}
434
- {"id": 47548, "token": "则", "type": "中文单字"}
435
- {"id": 47551, "token": "现", "type": "中文单字"}
436
- {"id": 47566, "token": "设", "type": "中文单字"}
437
- {"id": 47577, "token": "地址", "type": "中文多字"}
438
- {"id": 47585, "token": "保存", "type": "中文多字"}
439
- {"id": 47653, "token": "京", "type": "中文单字"}
440
- {"id": 47770, "token": "转", "type": "中文单字"}
441
- {"id": 47896, "token": " –\n\n", "type": "中文标点"}
442
- {"id": 47971, "token": "�示", "type": "中文多字"}
443
- {"id": 48039, "token": "辑", "type": "中文单字"}
444
- {"id": 48044, "token": "一个", "type": "中文多字"}
445
- {"id": 48249, "token": "限", "type": "中文单字"}
446
- {"id": 48349, "token": "“A", "type": "中文标点"}
447
- {"id": 48463, "token": "默认", "type": "中文多字"}
448
- {"id": 48634, "token": "力", "type": "中文单字"}
449
- {"id": 48706, "token": "存在", "type": "中文多字"}
450
- {"id": 48785, "token": "数", "type": "中文单字"}
451
- {"id": 48858, "token": "创建", "type": "中文多字"}
452
- {"id": 48864, "token": "学", "type": "中文单字"}
453
- {"id": 48915, "token": "外", "type": "中文单字"}
454
- {"id": 48972, "token": "调", "type": "中文单字"}
455
- {"id": 48974, "token": "服务", "type": "中文多字"}
456
- {"id": 48982, "token": "项", "type": "中文单字"}
457
- {"id": 49055, "token": "请输入", "type": "中文多字"}
458
- {"id": 49216, "token": ".”\n", "type": "中文标点"}
459
- {"id": 49372, "token": "),", "type": "中文标点"}
460
- {"id": 49409, "token": "北", "type": "中文单字"}
461
- {"id": 49491, "token": "字符", "type": "中文多字"}
462
- {"id": 49525, "token": "—in", "type": "中文标点"}
463
- {"id": 49543, "token": ":\n\n", "type": "中文标点"}
464
- {"id": 49792, "token": "工", "type": "中文单字"}
465
- {"id": 49838, "token": "笑", "type": "中文单字"}
466
- {"id": 49928, "token": "监", "type": "中文单字"}
467
- {"id": 49977, "token": "“That", "type": "中文标点"}
468
- {"id": 49988, "token": "任", "type": "中文单字"}
469
- {"id": 50004, "token": "—which", "type": "中文标点"}
470
- {"id": 50021, "token": "相", "type": "中文单字"}
471
- {"id": 50027, "token": "验证", "type": "中文多字"}
472
- {"id": 50034, "token": "微", "type": "中文单字"}
473
- {"id": 50126, "token": "册", "type": "中文单字"}
474
- {"id": 50182, "token": "联", "type": "中文单字"}
475
- {"id": 50211, "token": "平", "type": "中文单字"}
476
- {"id": 50285, "token": "增", "type": "中文单字"}
477
- {"id": 50287, "token": "听", "type": "中文单字"}
478
- {"id": 50338, "token": "解", "type": "中文单字"}
479
- {"id": 50617, "token": "—to", "type": "中文标点"}
480
- {"id": 50667, "token": "等", "type": "中文单字"}
481
- {"id": 50808, "token": "’ai", "type": "中文标点"}
482
- {"id": 50928, "token": "得", "type": "中文单字"}
483
- {"id": 51107, "token": "更新", "type": "中文多字"}
484
- {"id": 51109, "token": "收", "type": "中文单字"}
485
- {"id": 51142, "token": "用户", "type": "中文多字"}
486
- {"id": 51202, "token": "选�", "type": "中文多字"}
487
- {"id": 51279, "token": "…”", "type": "中文标点"}
488
- {"id": 51385, "token": "安", "type": "中文单字"}
489
- {"id": 51392, "token": "价", "type": "中文单字"}
490
- {"id": 51431, "token": "第", "type": "中文单字"}
491
- {"id": 51450, "token": "取消", "type": "中文多字"}
492
- {"id": 51466, "token": "藏", "type": "中文单字"}
493
- {"id": 51477, "token": "创建", "type": "中文多字"}
494
- {"id": 51504, "token": "选择", "type": "中文多字"}
495
- {"id": 51510, "token": "订单", "type": "中文多字"}
496
- {"id": 51609, "token": "命", "type": "中文单字"}
497
- {"id": 51611, "token": "应", "type": "中文单字"}
498
- {"id": 51747, "token": "为空", "type": "中文多字"}
499
- {"id": 51749, "token": "—or", "type": "中文标点"}
500
- {"id": 51757, "token": "—I", "type": "中文标点"}
501
- {"id": 51786, "token": "“,", "type": "中文标点"}
502
- {"id": 51928, "token": "“When", "type": "中文标点"}
503
- {"id": 52030, "token": "看", "type": "中文单字"}
504
- {"id": 52084, "token": "索", "type": "中文单字"}
505
- {"id": 52188, "token": "�始化", "type": "中文多字"}
506
- {"id": 52225, "token": "资", "type": "中文单字"}
507
- {"id": 52254, "token": "查询", "type": "中文多字"}
508
- {"id": 52289, "token": "’en", "type": "中文标点"}
509
- {"id": 52332, "token": "产", "type": "中文单字"}
510
- {"id": 52563, "token": "表示", "type": "中文多字"}
511
- {"id": 52675, "token": "串", "type": "中文单字"}
512
- {"id": 52927, "token": "布", "type": "中文单字"}
513
- {"id": 53229, "token": "原", "type": "中文单字"}
514
- {"id": 53263, "token": "…..", "type": "中文标点"}
515
- {"id": 53283, "token": "知", "type": "中文单字"}
516
- {"id": 53434, "token": "级", "type": "中文单字"}
517
- {"id": 53513, "token": "––", "type": "中文标点"}
518
- {"id": 53610, "token": "水", "type": "中文单字"}
519
- {"id": 53626, "token": "上传", "type": "中文多字"}
520
- {"id": 53676, "token": "…and", "type": "中文标点"}
521
- {"id": 53802, "token": "监听", "type": "中文多字"}
522
- {"id": 53826, "token": "击", "type": "中文单字"}
523
- {"id": 53901, "token": "好", "type": "中文单字"}
524
- {"id": 53953, "token": "物", "type": "中文单字"}
525
- {"id": 54140, "token": "文", "type": "中文单字"}
526
- {"id": 54154, "token": "设置", "type": "中文多字"}
527
- {"id": 54253, "token": "不能", "type": "中文多字"}
528
- {"id": 54322, "token": "放", "type": "中文单字"}
529
- {"id": 54456, "token": "亿", "type": "中文单字"}
530
- {"id": 54493, "token": "经", "type": "中文单字"}
531
- {"id": 54581, "token": "描述", "type": "中文多字"}
532
- {"id": 54689, "token": "。。\n\n", "type": "中文标点"}
533
- {"id": 54747, "token": "。“", "type": "中文标点"}
534
- {"id": 54872, "token": "模", "type": "中文单字"}
535
- {"id": 55030, "token": "之", "type": "中文单字"}
536
- {"id": 55038, "token": "台", "type": "中文单字"}
537
- {"id": 55080, "token": "…I", "type": "中文标点"}
538
- {"id": 55121, "token": "显示", "type": "中文多字"}
539
- {"id": 55139, "token": "州", "type": "中文单字"}
540
- {"id": 55434, "token": "—is", "type": "中文标点"}
541
- {"id": 55487, "token": "配", "type": "中文单字"}
542
- {"id": 55642, "token": "处理", "type": "中文多字"}
543
- {"id": 55723, "token": "画", "type": "中文单字"}
544
- {"id": 55758, "token": "统", "type": "中文单字"}
545
- {"id": 55951, "token": "是", "type": "中文单字"}
546
- {"id": 55999, "token": "共", "type": "中文单字"}
547
- {"id": 56026, "token": "连", "type": "中文单字"}
548
- {"id": 56040, "token": "〜", "type": "中文标点"}
549
- {"id": 56163, "token": "„", "type": "中文标点"}
550
- {"id": 56209, "token": "…\"", "type": "中文标点"}
551
- {"id": 56235, "token": "海", "type": "中文单字"}
552
- {"id": 56386, "token": "开始", "type": "中文多字"}
553
- {"id": 56438, "token": "所有", "type": "中文多字"}
554
- {"id": 56602, "token": "节", "type": "中文单字"}
555
- {"id": 56716, "token": "返回", "type": "中文多字"}
556
- {"id": 56906, "token": "退", "type": "中文单字"}
557
- {"id": 56907, "token": "”。", "type": "中文标点"}
558
- {"id": 56955, "token": "”),", "type": "中文标点"}
559
- {"id": 56965, "token": "間", "type": "中文单字"}
560
- {"id": 57106, "token": "比", "type": "中文单字"}
561
- {"id": 57107, "token": "问", "type": "中文单字"}
562
- {"id": 57237, "token": "至", "type": "中文单字"}
563
- {"id": 57287, "token": "’aut", "type": "中文标点"}
564
- {"id": 57378, "token": "备", "type": "中文单字"}
565
- {"id": 57633, "token": "”:", "type": "中文标点"}
566
- {"id": 57668, "token": "你", "type": "中文单字"}
567
- {"id": 57752, "token": "黑", "type": "中文单字"}
568
- {"id": 57861, "token": "…”\n\n", "type": "中文标点"}
569
- {"id": 57892, "token": "’av", "type": "中文标点"}
570
- {"id": 58004, "token": "下午", "type": "中文多字"}
571
- {"id": 58119, "token": "编辑", "type": "中文多字"}
572
- {"id": 58291, "token": "或", "type": "中文单字"}
573
- {"id": 58318, "token": "与", "type": "中文单字"}
574
- {"id": 58322, "token": "影", "type": "中文单字"}
575
- {"id": 58386, "token": "’h", "type": "中文标点"}
576
- {"id": 58521, "token": "作者", "type": "中文多字"}
577
- {"id": 58543, "token": "话", "type": "中文单字"}
578
- {"id": 58552, "token": "视", "type": "中文单字"}
579
- {"id": 58653, "token": "读", "type": "中文单字"}
580
- {"id": 58655, "token": "告", "type": "中文单字"}
581
- {"id": 58666, "token": "美", "type": "中文单字"}
582
- {"id": 58721, "token": "事件", "type": "中文多字"}
583
- {"id": 58850, "token": "女", "type": "中文单字"}
584
- {"id": 58911, "token": "山", "type": "中文单字"}
585
- {"id": 59243, "token": "和", "type": "中文单字"}
586
- {"id": 59363, "token": "生", "type": "中文单字"}
587
- {"id": 59459, "token": "。(", "type": "中文标点"}
588
- {"id": 59462, "token": "需", "type": "中文单字"}
589
- {"id": 59464, "token": "复", "type": "中文单字"}
590
- {"id": 59505, "token": "手机", "type": "中文多字"}
591
- {"id": 59563, "token": "南", "type": "中文单字"}
592
- {"id": 59614, "token": "必", "type": "中文单字"}
593
- {"id": 59622, "token": "�行", "type": "中文多字"}
594
- {"id": 59712, "token": "」「", "type": "中文标点"}
595
- {"id": 59757, "token": "分", "type": "中文单字"}
596
- {"id": 59795, "token": "中国", "type": "中文多字"}
597
- {"id": 59892, "token": "闭", "type": "中文单字"}
598
- {"id": 59914, "token": "加载", "type": "中文多字"}
599
- {"id": 60174, "token": "城", "type": "中文单字"}
600
- {"id": 60205, "token": "用户名", "type": "中文多字"}
601
- {"id": 60233, "token": " 。", "type": "中文标点"}
602
- {"id": 60239, "token": "�性", "type": "中文多字"}
603
- {"id": 60251, "token": "结果", "type": "中文多字"}
604
- {"id": 60317, "token": ";\n", "type": "中文标点"}
605
- {"id": 60358, "token": "近", "type": "中文单字"}
606
- {"id": 60455, "token": "效", "type": "中文单字"}
607
- {"id": 60632, "token": "利", "type": "中文单字"}
608
- {"id": 60634, "token": "移", "type": "中文单字"}
609
- {"id": 60654, "token": "—as", "type": "中文标点"}
610
- {"id": 60656, "token": "’int", "type": "中文标点"}
611
- {"id": 60710, "token": "–\n\n", "type": "中文标点"}
612
- {"id": 60843, "token": "总", "type": "中文单字"}
613
- {"id": 60979, "token": "按", "type": "中文单字"}
614
- {"id": 61056, "token": "排", "type": "中文单字"}
615
- {"id": 61075, "token": "首", "type": "中文单字"}
616
- {"id": 61131, "token": "’n", "type": "中文标点"}
617
- {"id": 61176, "token": "··", "type": "中文标点"}
618
- {"id": 61304, "token": "記", "type": "中文单字"}
619
- {"id": 61311, "token": "————————————————", "type": "中文标点"}
620
- {"id": 61337, "token": "社", "type": "中文单字"}
621
- {"id": 61496, "token": "标题", "type": "中文多字"}
622
- {"id": 61553, "token": "“As", "type": "中文标点"}
623
- {"id": 61559, "token": "“No", "type": "中文标点"}
624
- {"id": 61603, "token": "“But", "type": "中文标点"}
625
- {"id": 61633, "token": "注意", "type": "中文多字"}
626
- {"id": 61648, "token": "完成", "type": "中文多字"}
627
- {"id": 61710, "token": "确定", "type": "中文多字"}
628
- {"id": 61786, "token": "西", "type": "中文单字"}
629
- {"id": 61826, "token": "先", "type": "中文单字"}
630
- {"id": 61903, "token": "…\"\n\n", "type": "中文标点"}
631
- {"id": 61994, "token": "然", "type": "中文单字"}
632
- {"id": 62049, "token": "键", "type": "中文单字"}
633
- {"id": 62205, "token": "名", "type": "中文单字"}
634
- {"id": 62249, "token": "周期", "type": "中文多字"}
635
- {"id": 62291, "token": "额", "type": "中文单字"}
636
- {"id": 62543, "token": "写", "type": "中文单字"}
637
- {"id": 62597, "token": "“My", "type": "中文标点"}
638
- {"id": 62717, "token": "�名", "type": "中文多字"}
639
- {"id": 62789, "token": "注册", "type": "中文多字"}
640
- {"id": 62855, "token": "签", "type": "中文单字"}
641
- {"id": 63091, "token": "自", "type": "中文单字"}
642
- {"id": 63093, "token": "。',\n", "type": "中文标点"}
643
- {"id": 63212, "token": "因", "type": "中文单字"}
644
- {"id": 63289, "token": "下载", "type": "中文多字"}
645
- {"id": 63344, "token": "如果", "type": "中文多字"}
646
- {"id": 63362, "token": "数据", "type": "中文多字"}
647
- {"id": 63397, "token": "命周期", "type": "中文多字"}
648
- {"id": 63679, "token": "注", "type": "中文单字"}
649
- {"id": 63750, "token": "”—", "type": "中文标点"}
650
- {"id": 63938, "token": "—not", "type": "中文标点"}
651
- {"id": 63977, "token": " —\n\n", "type": "中文标点"}
652
- {"id": 64022, "token": "别", "type": "中文单字"}
653
- {"id": 64026, "token": "并", "type": "中文单字"}
654
- {"id": 64045, "token": "异", "type": "中文单字"}
655
- {"id": 64063, "token": "束", "type": "中文单字"}
656
- {"id": 64171, "token": "修改", "type": "中文多字"}
657
- {"id": 64173, "token": "删除", "type": "中文多字"}
658
- {"id": 64179, "token": "生命周期", "type": "中文多字"}
659
- {"id": 64209, "token": "心", "type": "中文单字"}
660
- {"id": 64376, "token": "。\",\n", "type": "中文标点"}
661
- {"id": 64414, "token": "链", "type": "中文单字"}
662
- {"id": 64467, "token": "指", "type": "中文单字"}
663
- {"id": 64479, "token": "评", "type": "中文单字"}
664
- {"id": 64531, "token": "整", "type": "中文单字"}
665
- {"id": 64623, "token": "’in", "type": "中文标点"}
666
- {"id": 64803, "token": "四", "type": "中文单字"}
667
- {"id": 64889, "token": "断", "type": "中文单字"}
668
- {"id": 64936, "token": "角", "type": "中文单字"}
669
- {"id": 64960, "token": "生命周期函数", "type": "中文多字"}
670
- {"id": 65053, "token": "监听页面", "type": "中文多字"}
671
- {"id": 65164, "token": "连接", "type": "中文多字"}
672
- {"id": 65218, "token": "上", "type": "中文单字"}
673
- {"id": 65305, "token": "消息", "type": "中文多字"}
674
- {"id": 65312, "token": "”).", "type": "中文标点"}
675
- {"id": 65372, "token": "软", "type": "中文单字"}
676
- {"id": 65455, "token": "头", "type": "中文单字"}
677
- {"id": 65459, "token": ")、", "type": "中文标点"}
678
- {"id": 65529, "token": "对象", "type": "中文多字"}
679
- {"id": 65571, "token": "是否", "type": "中文多字"}
680
- {"id": 65573, "token": "邮", "type": "中文单字"}
681
- {"id": 65659, "token": "义", "type": "中文单字"}
682
- {"id": 65743, "token": "司", "type": "中文单字"}
683
- {"id": 65782, "token": "步", "type": "中文单字"}
684
- {"id": 65789, "token": "门", "type": "中文单字"}
685
- {"id": 65820, "token": "导", "type": "中文单字"}
686
- {"id": 65854, "token": "客", "type": "中文单字"}
687
- {"id": 65884, "token": "不能为空", "type": "中文多字"}
688
- {"id": 65917, "token": "右", "type": "中文单字"}
689
- {"id": 66052, "token": "频", "type": "中文单字"}
690
- {"id": 66101, "token": "\"—", "type": "中文标点"}
691
- {"id": 66201, "token": "像", "type": "中文单字"}
692
- {"id": 66327, "token": "。「", "type": "中文标点"}
693
- {"id": 66378, "token": "特", "type": "中文单字"}
694
- {"id": 66383, "token": "」と", "type": "中文标点"}
695
- {"id": 66545, "token": "”;", "type": "中文标点"}
696
- {"id": 66621, "token": " ….", "type": "中文标点"}
697
- {"id": 66625, "token": "“Our", "type": "中文标点"}
698
- {"id": 66677, "token": "记录", "type": "中文多字"}
699
- {"id": 66679, "token": "…\n\n\n", "type": "中文标点"}
700
- {"id": 66776, "token": "非", "type": "中文单字"}
701
- {"id": 66850, "token": " “[", "type": "中文标点"}
702
- {"id": 66870, "token": "省", "type": "中文单字"}
703
- {"id": 67117, "token": "输出", "type": "中文多字"}
704
- {"id": 67178, "token": "造", "type": "中文单字"}
705
- {"id": 67282, "token": "’ét", "type": "中文标点"}
706
- {"id": 67287, "token": "姓名", "type": "中文多字"}
707
- {"id": 67494, "token": "说明", "type": "中文多字"}
708
- {"id": 67658, "token": "字符串", "type": "中文多字"}
709
- {"id": 67669, "token": "径", "type": "中文单字"}
710
- {"id": 67735, "token": "�试", "type": "中文多字"}
711
- {"id": 67870, "token": "’e", "type": "中文标点"}
712
- {"id": 67886, "token": " ”\n\n", "type": "中文标点"}
713
- {"id": 67933, "token": "详", "type": "中文单字"}
714
- {"id": 67986, "token": "验证码", "type": "中文多字"}
715
- {"id": 67998, "token": "。\\", "type": "中文标点"}
716
- {"id": 68171, "token": "由", "type": "中文单字"}
717
- {"id": 68230, "token": "^", "type": "中文标点"}
718
- {"id": 68306, "token": "’on", "type": "中文标点"}
719
- {"id": 68379, "token": "包", "type": "中文单字"}
720
- {"id": 68438, "token": "通过", "type": "中文多字"}
721
- {"id": 68464, "token": "东", "type": "中文单字"}
722
- {"id": 68850, "token": ")—", "type": "中文标点"}
723
- {"id": 68931, "token": "论", "type": "中文单字"}
724
- {"id": 68932, "token": "“And", "type": "中文标点"}
725
- {"id": 69049, "token": "当前", "type": "中文多字"}
726
- {"id": 69165, "token": "络", "type": "中文单字"}
727
- {"id": 69253, "token": "款", "type": "中文单字"}
728
- {"id": 69272, "token": "�藏", "type": "中文多字"}
729
- {"id": 69362, "token": "支付", "type": "中文多字"}
730
- {"id": 69496, "token": "启", "type": "中文单字"}
731
- {"id": 69636, "token": "而", "type": "中文单字"}
732
- {"id": 69856, "token": "填", "type": "中文单字"}
733
- {"id": 69905, "token": "格式", "type": "中文多字"}
734
- {"id": 69962, "token": "释", "type": "中文单字"}
735
- {"id": 69978, "token": "持", "type": "中文单字"}
736
- {"id": 70041, "token": "��索", "type": "中文多字"}
737
- {"id": 70090, "token": "北京", "type": "中文多字"}
738
- {"id": 70141, "token": "向", "type": "中文单字"}
739
- {"id": 70158, "token": "输入", "type": "中文多字"}
740
- {"id": 70203, "token": "算", "type": "中文单字"}
741
- {"id": 70214, "token": "“So", "type": "中文标点"}
742
- {"id": 70262, "token": "对", "type": "中文单字"}
743
- {"id": 70277, "token": "江", "type": "中文单字"}
744
- {"id": 70284, "token": "不存在", "type": "中文多字"}
745
- {"id": 70349, "token": "里", "type": "中文单字"}
746
- {"id": 70453, "token": "查", "type": "中文单字"}
747
- {"id": 70472, "token": "如", "type": "中文单字"}
748
- {"id": 70525, "token": "发", "type": "中文单字"}
749
- {"id": 70542, "token": "份", "type": "中文单字"}
750
- {"id": 70615, "token": "),", "type": "中文标点"}
751
- {"id": 70616, "token": "责", "type": "中文单字"}
752
- {"id": 70626, "token": "科", "type": "中文单字"}
753
- {"id": 70694, "token": "文件", "type": "中文多字"}
754
- {"id": 70774, "token": "类", "type": "中文单字"}
755
- {"id": 70821, "token": "民", "type": "中文单字"}
756
- {"id": 70924, "token": "数组", "type": "中文多字"}
757
- {"id": 71005, "token": "治", "type": "中文单字"}
758
- {"id": 71082, "token": "%,", "type": "中文标点"}
759
- {"id": 71174, "token": "声", "type": "中文单字"}
760
- {"id": 71201, "token": "—they", "type": "中文标点"}
761
- {"id": 71208, "token": "男", "type": "中文单字"}
762
- {"id": 71270, "token": "“(", "type": "中文标点"}
763
- {"id": 71298, "token": "[…", "type": "中文标点"}
764
- {"id": 71461, "token": "重新", "type": "中文多字"}
765
- {"id": 71480, "token": "—you", "type": "中文标点"}
766
- {"id": 71600, "token": "设计", "type": "中文多字"}
767
- {"id": 71638, "token": "分类", "type": "中文多字"}
768
- {"id": 71668, "token": "输出", "type": "中文多字"}
769
- {"id": 71689, "token": "以上", "type": "中文多字"}
770
- {"id": 71733, "token": "异常", "type": "中文多字"}
771
- {"id": 71869, "token": "族", "type": "中文单字"}
772
- {"id": 71890, "token": "站", "type": "中文单字"}
773
- {"id": 72027, "token": "没", "type": "中文单字"}
774
- {"id": 72069, "token": "参数", "type": "中文多字"}
775
- {"id": 72099, "token": "県", "type": "中文单字"}
776
- {"id": 72125, "token": "雅", "type": "中文单字"}
777
- {"id": 72209, "token": "版本", "type": "中文多字"}
778
- {"id": 72234, "token": "换", "type": "中文单字"}
779
- {"id": 72237, "token": "核", "type": "中文单字"}
780
- {"id": 72238, "token": "素", "type": "中文单字"}
781
- {"id": 72318, "token": "—for", "type": "中文标点"}
782
- {"id": 72368, "token": "都", "type": "中文单字"}
783
- {"id": 72404, "token": "超", "type": "中文单字"}
784
- {"id": 72434, "token": "!’", "type": "中文标点"}
785
- {"id": 72456, "token": "网络", "type": "中文多字"}
786
- {"id": 72516, "token": "店", "type": "中文单字"}
787
- {"id": 72718, "token": "起", "type": "中文单字"}
788
- {"id": 72794, "token": "隐藏", "type": "中文多字"}
789
- {"id": 72843, "token": "享", "type": "中文单字"}
790
- {"id": 72873, "token": "方", "type": "中文单字"}
791
- {"id": 72917, "token": "进行", "type": "中文多字"}
792
- {"id": 73051, "token": "是否", "type": "中文多字"}
793
- {"id": 73071, "token": "提交", "type": "中文多字"}
794
- {"id": 73117, "token": "发送", "type": "中文多字"}
795
- {"id": 73164, "token": "联系", "type": "中文多字"}
796
- {"id": 73325, "token": "拉", "type": "中文单字"}
797
- {"id": 73329, "token": "…\n\n\n\n", "type": "中文标点"}
798
- {"id": 73361, "token": "米", "type": "中文单字"}
799
- {"id": 73548, "token": "系统", "type": "中文多字"}
800
- {"id": 73686, "token": "引", "type": "中文单字"}
801
- {"id": 73740, "token": "编号", "type": "中文多字"}
802
- {"id": 73751, "token": "点击", "type": "中文多字"}
803
- {"id": 73769, "token": "更", "type": "中文单字"}
804
- {"id": 73939, "token": "…)", "type": "中文标点"}
805
- {"id": 73958, "token": "中", "type": "中文单字"}
806
- {"id": 73981, "token": "语", "type": "中文单字"}
807
- {"id": 74022, "token": "”?", "type": "中文标点"}
808
- {"id": 74090, "token": "土", "type": "中文单字"}
809
- {"id": 74138, "token": "宋", "type": "中文单字"}
810
- {"id": 74245, "token": "直", "type": "中文单字"}
811
- {"id": 74257, "token": "每", "type": "中文单字"}
812
- {"id": 74318, "token": "公司", "type": "中文多字"}
813
- {"id": 74396, "token": "箱", "type": "中文单字"}
814
- {"id": 74412, "token": "字", "type": "中文单字"}
815
- {"id": 74445, "token": "项目", "type": "中文多字"}
816
- {"id": 74482, "token": "後", "type": "中文单字"}
817
- {"id": 74662, "token": "在", "type": "中文单字"}
818
- {"id": 74770, "token": "可以", "type": "中文多字"}
819
- {"id": 74843, "token": "参", "type": "中文单字"}
820
- {"id": 75140, "token": "变", "type": "中文单字"}
821
- {"id": 75146, "token": "基", "type": "中文单字"}
822
- {"id": 75259, "token": "页面", "type": "中文多字"}
823
- {"id": 75267, "token": "場", "type": "中文单字"}
824
- {"id": 75293, "token": "待", "type": "中文单字"}
825
- {"id": 75320, "token": "程序", "type": "中文多字"}
826
- {"id": 75376, "token": ")。", "type": "中文标点"}
827
- {"id": 75486, "token": "规", "type": "中文单字"}
828
- {"id": 75493, "token": "数据库", "type": "中文多字"}
829
- {"id": 75513, "token": "政", "type": "中文单字"}
830
- {"id": 75550, "token": "“For", "type": "中文标点"}
831
- {"id": 75630, "token": "雅黑", "type": "中文多字"}
832
- {"id": 75631, "token": "软雅黑", "type": "中文多字"}
833
- {"id": 75761, "token": "排序", "type": "中文多字"}
834
- {"id": 75787, "token": "。\n\n\n\n\n\n", "type": "中文标点"}
835
- {"id": 75863, "token": "也", "type": "中文单字"}
836
- {"id": 75910, "token": "介", "type": "中文单字"}
837
- {"id": 75976, "token": "首页", "type": "中文多字"}
838
- {"id": 76070, "token": "—including", "type": "中文标点"}
839
- {"id": 76099, "token": "关闭", "type": "中文多字"}
840
- {"id": 76148, "token": ",\n\n", "type": "中文标点"}
841
- {"id": 76161, "token": "钟", "type": "中文单字"}
842
- {"id": 76208, "token": "五", "type": "中文单字"}
843
- {"id": 76217, "token": "执行", "type": "中文多字"}
844
- {"id": 76323, "token": "审", "type": "中文单字"}
845
- {"id": 76417, "token": "单位", "type": "中文多字"}
846
- {"id": 76455, "token": "手机号", "type": "中文多字"}
847
- {"id": 76502, "token": "日", "type": "中文单字"}
848
- {"id": 76505, "token": "木", "type": "中文单字"}
849
- {"id": 76537, "token": "打", "type": "中文单字"}
850
- {"id": 76706, "token": "活", "type": "中文单字"}
851
- {"id": 76718, "token": "微软雅黑", "type": "中文多字"}
852
- {"id": 76750, "token": "播", "type": "中文单字"}
853
- {"id": 76843, "token": "!!\n\n", "type": "中文标点"}
854
- {"id": 76858, "token": "!”", "type": "中文标点"}
855
- {"id": 76864, "token": "!」", "type": "中文标点"}
856
- {"id": 76868, "token": "方式", "type": "中文多字"}
857
- {"id": 76929, "token": "—he", "type": "中文标点"}
858
- {"id": 76982, "token": "该", "type": "中文单字"}
859
- {"id": 77138, "token": "’am", "type": "中文标点"}
860
- {"id": 77158, "token": "…)\n\n", "type": "中文标点"}
861
- {"id": 77190, "token": "初始化", "type": "中文多字"}
862
- {"id": 77195, "token": "条件", "type": "中文多字"}
863
- {"id": 77219, "token": "記事", "type": "中文多字"}
864
- {"id": 77284, "token": "“.", "type": "中文标点"}
865
- {"id": 77413, "token": "展", "type": "中文单字"}
866
- {"id": 77479, "token": ",…\n\n", "type": "中文标点"}
867
- {"id": 77748, "token": "钮", "type": "中文单字"}
868
- {"id": 77913, "token": "具", "type": "中文单字"}
869
- {"id": 77937, "token": "路径", "type": "中文多字"}
870
- {"id": 78021, "token": "退出", "type": "中文多字"}
871
- {"id": 78111, "token": "宋体", "type": "中文多字"}
872
- {"id": 78228, "token": "志", "type": "中文单字"}
873
- {"id": 78244, "token": "言", "type": "中文单字"}
874
- {"id": 78272, "token": "购", "type": "中文单字"}
875
- {"id": 78366, "token": "……………………", "type": "中文标点"}
876
- {"id": 78388, "token": "但", "type": "中文单字"}
877
- {"id": 78519, "token": "星", "type": "中文单字"}
878
- {"id": 78640, "token": "两", "type": "中文单字"}
879
- {"id": 78657, "token": "例如", "type": "中文多字"}
880
- {"id": 78659, "token": "左", "type": "中文单字"}
881
- {"id": 78698, "token": "考", "type": "中文单字"}
882
- {"id": 78935, "token": "构", "type": "中文单字"}
883
- {"id": 78943, "token": "報", "type": "中文单字"}
884
- {"id": 79059, "token": "球", "type": "中文单字"}
885
- {"id": 79108, "token": "设计器", "type": "中文多字"}
886
- {"id": 79203, "token": "更新", "type": "中文多字"}
887
- {"id": 79656, "token": "相关", "type": "中文多字"}
888
- {"id": 79785, "token": "音", "type": "中文单字"}
889
- {"id": 79908, "token": "动生成", "type": "中文多字"}
890
- {"id": 79982, "token": "端", "type": "中文单字"}
891
- {"id": 80000, "token": "。”\n\n", "type": "中文标点"}
892
- {"id": 80003, "token": ",默认", "type": "中文多字"}
893
- {"id": 80019, "token": "新", "type": "中文单字"}
894
- {"id": 80073, "token": "搜索", "type": "中文多字"}
895
- {"id": 80078, "token": "—even", "type": "中文标点"}
896
- {"id": 80172, "token": "投", "type": "中文单字"}
897
- {"id": 80195, "token": "立", "type": "中文单字"}
898
- {"id": 80356, "token": "属性", "type": "中文多字"}
899
- {"id": 80426, "token": "�断", "type": "中文多字"}
900
- {"id": 80578, "token": "们", "type": "中文单字"}
901
- {"id": 80615, "token": ".…\n\n", "type": "中文标点"}
902
- {"id": 80699, "token": "火", "type": "中文单字"}
903
- {"id": 80804, "token": "示", "type": "中文单字"}
904
- {"id": 80866, "token": "清", "type": "中文单字"}
905
- {"id": 81194, "token": "金额", "type": "中文多字"}
906
- {"id": 81201, "token": "账", "type": "中文单字"}
907
- {"id": 81258, "token": "就", "type": "中文单字"}
908
- {"id": 81368, "token": "费", "type": "中文单字"}
909
- {"id": 81506, "token": "请选择", "type": "中文多字"}
910
- {"id": 81526, "token": "示例", "type": "中文多字"}
911
- {"id": 81543, "token": "没有", "type": "中文多字"}
912
- {"id": 81546, "token": ":\"+", "type": "中文标点"}
913
- {"id": 81628, "token": "查询", "type": "中文多字"}
914
- {"id": 81646, "token": "默认", "type": "中文多字"}
915
- {"id": 81665, "token": "结束", "type": "中文多字"}
916
- {"id": 81742, "token": "案", "type": "中文单字"}
917
- {"id": 81902, "token": "—with", "type": "中文标点"}
918
- {"id": 81951, "token": "控", "type": "中文单字"}
919
- {"id": 81976, "token": "请求", "type": "中文多字"}
920
- {"id": 82042, "token": "广", "type": "中文单字"}
921
- {"id": 82175, "token": "’app", "type": "中文标点"}
922
- {"id": 82267, "token": "确认", "type": "中文多字"}
923
- {"id": 82302, "token": "历", "type": "中文单字"}
924
- {"id": 82317, "token": "及", "type": "中文单字"}
925
- {"id": 82363, "token": "如果", "type": "中文多字"}
926
- {"id": 82364, "token": "?”", "type": "中文标点"}
927
- {"id": 82420, "token": "計", "type": "中文单字"}
928
- {"id": 82530, "token": "、、", "type": "中文标点"}
929
- {"id": 82533, "token": "止", "type": "中文单字"}
930
- {"id": 82554, "token": "方法", "type": "中文多字"}
931
- {"id": 82696, "token": "么", "type": "中文单字"}
932
- {"id": 82768, "token": "货", "type": "中文单字"}
933
- {"id": 82805, "token": "测试", "type": "中文多字"}
934
- {"id": 82900, "token": "数量", "type": "中文多字"}
935
- {"id": 82912, "token": "位置", "type": "中文多字"}
936
- {"id": 82973, "token": "時間", "type": "中文多字"}
937
- {"id": 83042, "token": "�权", "type": "中文多字"}
938
- {"id": 83047, "token": "开", "type": "中文单字"}
939
- {"id": 83125, "token": "文章", "type": "中文多字"}
940
- {"id": 83175, "token": "阳", "type": "中文单字"}
941
- {"id": 83266, "token": "队", "type": "中文单字"}
942
- {"id": 83301, "token": "技", "type": "中文单字"}
943
- {"id": 83324, "token": "场", "type": "中文单字"}
944
- {"id": 83337, "token": "链接", "type": "中文多字"}
945
- {"id": 83354, "token": ">", "type": "中文标点"}
946
- {"id": 83439, "token": "添加", "type": "中文多字"}
947
- {"id": 83639, "token": "最", "type": "中文单字"}
948
- {"id": 83687, "token": "数字", "type": "中文多字"}
949
- {"id": 83741, "token": "声明", "type": "中文多字"}
950
- {"id": 83747, "token": "少", "type": "中文单字"}
951
- {"id": 83766, "token": "…but", "type": "中文标点"}
952
- {"id": 83799, "token": "形", "type": "中文单字"}
953
- {"id": 83800, "token": "产品", "type": "中文多字"}
954
- {"id": 83872, "token": "—are", "type": "中文标点"}
955
- {"id": 83932, "token": "稿", "type": "中文单字"}
956
- {"id": 83947, "token": "英", "type": "中文单字"}
957
- {"id": 83994, "token": "游", "type": "中文单字"}
958
- {"id": 84095, "token": "亿元", "type": "中文多字"}
959
- {"id": 84131, "token": "分钟", "type": "中文多字"}
960
- {"id": 84341, "token": ".…", "type": "中文标点"}
961
- {"id": 84410, "token": "商", "type": "中文单字"}
962
- {"id": 84498, "token": "“She", "type": "中文标点"}
963
- {"id": 84765, "token": "!\",", "type": "中文标点"}
964
- {"id": 84844, "token": "供", "type": "中文单字"}
965
- {"id": 84851, "token": "推", "type": "中文单字"}
966
- {"id": 84875, "token": "!\n\n\n\n", "type": "中文标点"}
967
- {"id": 84941, "token": "—who", "type": "中文标点"}
968
- {"id": 85155, "token": "初始化", "type": "中文多字"}
969
- {"id": 85188, "token": "税", "type": "中文单字"}
970
- {"id": 85284, "token": "按钮", "type": "中文多字"}
971
- {"id": 85366, "token": "—an", "type": "中文标点"}
972
- {"id": 85663, "token": "無し�", "type": "中文多字"}
973
- {"id": 85707, "token": "初", "type": "中文单字"}
974
- {"id": 85997, "token": "当", "type": "中文单字"}
975
- {"id": 85998, "token": "!');\n", "type": "中文标点"}
976
- {"id": 86127, "token": "私", "type": "中文单字"}
977
- {"id": 86206, "token": "需要", "type": "中文多字"}
978
- {"id": 86222, "token": "解", "type": "中文单字"}
979
- {"id": 86319, "token": "—we", "type": "中文标点"}
980
- {"id": 86348, "token": "全部", "type": "中文多字"}
981
- {"id": 86354, "token": "景", "type": "中文单字"}
982
- {"id": 86429, "token": "资源", "type": "中文多字"}
983
- {"id": 86436, "token": "去", "type": "中文单字"}
984
- {"id": 86461, "token": "华", "type": "中文单字"}
985
- {"id": 86508, "token": "“Yes", "type": "中文标点"}
986
- {"id": 86601, "token": "’T", "type": "中文标点"}
987
- {"id": 86741, "token": "评论", "type": "中文多字"}
988
- {"id": 86758, "token": "使用", "type": "中文多字"}
989
- {"id": 86846, "token": "’B", "type": "中文标点"}
990
- {"id": 86867, "token": "配置", "type": "中文多字"}
991
- {"id": 87023, "token": "–and", "type": "中文标点"}
992
- {"id": 87109, "token": "不", "type": "中文单字"}
993
- {"id": 87177, "token": "話", "type": "中文单字"}
994
- {"id": 87217, "token": "番", "type": "中文单字"}
995
- {"id": 87219, "token": "问题", "type": "中文多字"}
996
- {"id": 87247, "token": "—all", "type": "中文标点"}
997
- {"id": 87327, "token": "报道", "type": "中文多字"}
998
- {"id": 87412, "token": "环", "type": "中文单字"}
999
- {"id": 87441, "token": "张", "type": "中文单字"}
1000
- {"id": 87447, "token": "開", "type": "中文单字"}
1001
- {"id": 87474, "token": "無しさん", "type": "中文多字"}
1002
- {"id": 87502, "token": "种", "type": "中文单字"}
1003
- {"id": 87646, "token": "成", "type": "中文单字"}
1004
- {"id": 87671, "token": "—one", "type": "中文标点"}
1005
- {"id": 87844, "token": "易", "type": "中文单字"}
1006
- {"id": 87990, "token": "“Oh", "type": "中文标点"}
1007
- {"id": 88108, "token": "……\n\n", "type": "中文标点"}
1008
- {"id": 88126, "token": "您", "type": "中文单字"}
1009
- {"id": 88161, "token": "’an", "type": "中文标点"}
1010
- {"id": 88240, "token": "视频", "type": "中文多字"}
1011
- {"id": 88343, "token": "》,", "type": "中文标点"}
1012
- {"id": 88348, "token": ".’”\n\n", "type": "中文标点"}
1013
- {"id": 88356, "token": "再", "type": "中文单字"}
1014
- {"id": 88367, "token": "可能", "type": "中文多字"}
1015
- {"id": 88435, "token": "文字", "type": "中文多字"}
1016
- {"id": 88631, "token": "板", "type": "中文单字"}
1017
- {"id": 88851, "token": "’acc", "type": "中文标点"}
1018
- {"id": 88852, "token": "以下", "type": "中文多字"}
1019
- {"id": 88905, "token": "电话", "type": "中文多字"}
1020
- {"id": 88925, "token": "“Well", "type": "中文标点"}
1021
- {"id": 88958, "token": "—from", "type": "中文标点"}
1022
- {"id": 89046, "token": "連", "type": "中文单字"}
1023
- {"id": 89151, "token": "真", "type": "中文单字"}
1024
- {"id": 89186, "token": "有效", "type": "中文多字"}
1025
- {"id": 89213, "token": "’:", "type": "中文标点"}
1026
- {"id": 89408, "token": "今年", "type": "中文多字"}
1027
- {"id": 89575, "token": "€“", "type": "中文标点"}
1028
- {"id": 89753, "token": "流", "type": "中文单字"}
1029
- {"id": 89783, "token": "余", "type": "中文单字"}
1030
- {"id": 89874, "token": "”\n", "type": "中文标点"}
1031
- {"id": 89902, "token": "任务", "type": "中文多字"}
1032
- {"id": 90070, "token": "见", "type": "中文单字"}
1033
- {"id": 90091, "token": "正确", "type": "中文多字"}
1034
- {"id": 90112, "token": "给", "type": "中文单字"}
1035
- {"id": 90147, "token": "服务器", "type": "中文多字"}
1036
- {"id": 90223, "token": "’es", "type": "中文标点"}
1037
- {"id": 90261, "token": "来源", "type": "中文多字"}
1038
- {"id": 90354, "token": "结", "type": "中文单字"}
1039
- {"id": 90493, "token": "。<", "type": "中文标点"}
1040
- {"id": 90578, "token": "…\n", "type": "中文标点"}
1041
- {"id": 90581, "token": "-", "type": "中文标点"}
1042
- {"id": 90756, "token": "详情", "type": "中文多字"}
1043
- {"id": 90863, "token": "—if", "type": "中文标点"}
1044
- {"id": 91006, "token": "?」", "type": "中文标点"}
1045
- {"id": 91077, "token": "局", "type": "中文单字"}
1046
- {"id": 91082, "token": "主", "type": "中文单字"}
1047
- {"id": 91240, "token": "’à", "type": "中文标点"}
1048
- {"id": 91272, "token": "优", "type": "中文单字"}
1049
- {"id": 91386, "token": "书", "type": "中文单字"}
1050
- {"id": 91417, "token": "’y", "type": "中文标点"}
1051
- {"id": 91418, "token": "’util", "type": "中文标点"}
1052
- {"id": 91443, "token": "’hui", "type": "中文标点"}
1053
- {"id": 91466, "token": "一页", "type": "中文多字"}
1054
- {"id": 91495, "token": ",并", "type": "中文多字"}
1055
- {"id": 91547, "token": "发布", "type": "中文多字"}
1056
- {"id": 91763, "token": "思", "type": "中文单字"}
1057
- {"id": 91774, "token": "見", "type": "中文单字"}
1058
- {"id": 91837, "token": ":<", "type": "中文标点"}
1059
- {"id": 91875, "token": "動", "type": "中文单字"}
1060
- {"id": 91940, "token": "运", "type": "中文单字"}
1061
- {"id": 91951, "token": "审核", "type": "中文多字"}
1062
- {"id": 91967, "token": "图", "type": "中文单字"}
1063
- {"id": 91985, "token": "样", "type": "中文单字"}
1064
- {"id": 92019, "token": "其中", "type": "中文多字"}
1065
- {"id": 92056, "token": "权限", "type": "中文多字"}
1066
- {"id": 92099, "token": "删除成功", "type": "中文多字"}
1067
- {"id": 92113, "token": " “…", "type": "中文标点"}
1068
- {"id": 92150, "token": "�新", "type": "中文多字"}
1069
- {"id": 92193, "token": "(笑", "type": "中文多字"}
1070
- {"id": 92211, "token": ",《", "type": "中文标点"}
1071
- {"id": 92264, "token": ",’”", "type": "中文标点"}
1072
- {"id": 92318, "token": "时间", "type": "中文多字"}
1073
- {"id": 92366, "token": "】,", "type": "中文标点"}
1074
- {"id": 92378, "token": ")\r\n", "type": "中文标点"}
1075
- {"id": 92382, "token": "定义", "type": "中文多字"}
1076
- {"id": 92517, "token": "关", "type": "中文单字"}
1077
- {"id": 92527, "token": "登", "type": "中文单字"}
1078
- {"id": 92553, "token": "销", "type": "中文单字"}
1079
- {"id": 92555, "token": "万元", "type": "中文多字"}
1080
- {"id": 92672, "token": "同时", "type": "中文多字"}
1081
- {"id": 92693, "token": "無料", "type": "中文多字"}
1082
- {"id": 92748, "token": "’all", "type": "中文标点"}
1083
- {"id": 92776, "token": "即", "type": "中文单字"}
1084
- {"id": 92780, "token": "只", "type": "中文单字"}
1085
- {"id": 92877, "token": "老", "type": "中文单字"}
1086
- {"id": 93056, "token": "、“", "type": "中文标点"}
1087
- {"id": 93115, "token": "岁", "type": "中文单字"}
1088
- {"id": 93126, "token": "’Brien", "type": "中文标点"}
1089
- {"id": 93132, "token": "大小", "type": "中文多字"}
1090
- {"id": 93233, "token": "找", "type": "中文单字"}
1091
- {"id": 93269, "token": "“These", "type": "中文标点"}
1092
- {"id": 93393, "token": "实", "type": "中文单字"}
1093
- {"id": 93413, "token": "或", "type": "中文单字"}
1094
- {"id": 93446, "token": "“\n\n", "type": "中文标点"}
1095
- {"id": 93474, "token": "节点", "type": "中文多字"}
1096
- {"id": 93598, "token": "若", "type": "中文单字"}
1097
- {"id": 93636, "token": "小时", "type": "中文多字"}
1098
- {"id": 93673, "token": "“To", "type": "中文标点"}
1099
- {"id": 93830, "token": "—\"", "type": "中文标点"}
1100
- {"id": 93922, "token": "’autres", "type": "中文标点"}
1101
- {"id": 93994, "token": "其他", "type": "中文多字"}
1102
- {"id": 94134, "token": "自治", "type": "中文多字"}
1103
- {"id": 94249, "token": "分享", "type": "中文多字"}
1104
- {"id": 94345, "token": "’ex", "type": "中文标点"}
1105
- {"id": 94366, "token": "稍", "type": "中文单字"}
1106
- {"id": 94518, "token": "…the", "type": "中文标点"}
1107
- {"id": 94537, "token": "�件", "type": "中文多字"}
1108
- {"id": 94588, "token": "达", "type": "中文单字"}
1109
- {"id": 94668, "token": "邮箱", "type": "中文多字"}
1110
- {"id": 94720, "token": "新增", "type": "中文多字"}
1111
- {"id": 94785, "token": "提", "type": "中文单字"}
1112
- {"id": 94895, "token": ":%", "type": "中文标点"}
1113
- {"id": 94923, "token": "院", "type": "中文单字"}
1114
- {"id": 94983, "token": "加", "type": "中文单字"}
1115
- {"id": 95001, "token": "価", "type": "中文单字"}
1116
- {"id": 95221, "token": "気", "type": "中文单字"}
1117
- {"id": 95337, "token": "约", "type": "中文单字"}
1118
- {"id": 95399, "token": "速", "type": "中文单字"}
1119
- {"id": 95475, "token": "停", "type": "中文单字"}
1120
- {"id": 95532, "token": "?\n", "type": "中文标点"}
1121
- {"id": 95543, "token": "反", "type": "中文单字"}
1122
- {"id": 95544, "token": "票", "type": "中文单字"}
1123
- {"id": 95598, "token": "十", "type": "中文单字"}
1124
- {"id": 96153, "token": ",则", "type": "中文多字"}
1125
- {"id": 96197, "token": ",—", "type": "中文标点"}
1126
- {"id": 96203, "token": "“At", "type": "中文标点"}
1127
- {"id": 96206, "token": "’)", "type": "中文标点"}
1128
- {"id": 96332, "token": "[…]", "type": "中文标点"}
1129
- {"id": 96356, "token": "身", "type": "中文单字"}
1130
- {"id": 96407, "token": "商品", "type": "中文多字"}
1131
- {"id": 96412, "token": "含", "type": "中文单字"}
1132
- {"id": 96455, "token": "率", "type": "中文单字"}
1133
- {"id": 96500, "token": "汽", "type": "中文单字"}
1134
- {"id": 96511, "token": "专", "type": "中文单字"}
1135
- {"id": 96555, "token": "/", "type": "中文标点"}
1136
- {"id": 96557, "token": "管理员", "type": "中文多字"}
1137
- {"id": 97049, "token": "歳", "type": "中文单字"}
1138
- {"id": 97150, "token": ",在", "type": "中文多字"}
1139
- {"id": 97360, "token": ".–", "type": "中文标点"}
1140
- {"id": 97432, "token": "”。\n\n", "type": "中文标点"}
1141
- {"id": 97518, "token": "関", "type": "中文单字"}
1142
- {"id": 97522, "token": "议", "type": "中文单字"}
1143
- {"id": 97565, "token": "雷", "type": "中文单字"}
1144
- {"id": 97655, "token": "正在", "type": "中文多字"}
1145
- {"id": 97908, "token": "�能", "type": "中文多字"}
1146
- {"id": 97999, "token": "。(", "type": "中文标点"}
1147
- {"id": 98128, "token": "自动生成", "type": "中文多字"}
1148
- {"id": 98134, "token": "’elle", "type": "中文标点"}
1149
- {"id": 98184, "token": "些", "type": "中文单字"}
1150
- {"id": 98220, "token": "界", "type": "中文单字"}
1151
- {"id": 98245, "token": "陆", "type": "中文单字"}
1152
- {"id": 98261, "token": "注意", "type": "中文多字"}
1153
- {"id": 98390, "token": "备注", "type": "中文多字"}
1154
- {"id": 98406, "token": "倍", "type": "中文单字"}
1155
- {"id": 98458, "token": ",’’", "type": "中文标点"}
1156
- {"id": 98476, "token": "“How", "type": "中文标点"}
1157
- {"id": 98499, "token": "読", "type": "中文单字"}
1158
- {"id": 98580, "token": "价格", "type": "中文多字"}
1159
- {"id": 98657, "token": "检", "type": "中文单字"}
1160
- {"id": 98711, "token": "我的", "type": "中文多字"}
1161
- {"id": 98739, "token": "我们", "type": "中文多字"}
1162
- {"id": 98806, "token": "还", "type": "中文单字"}
1163
- {"id": 98871, "token": "析", "type": "中文单字"}
1164
- {"id": 98897, "token": "企", "type": "中文单字"}
1165
- {"id": 98915, "token": "友", "type": "中文单字"}
1166
- {"id": 99007, "token": "”的", "type": "中文多字"}
1167
- {"id": 99072, "token": "。www", "type": "中文标点"}
1168
- {"id": 99083, "token": "“All", "type": "中文标点"}
1169
- {"id": 99313, "token": ",…", "type": "中文标点"}
1170
- {"id": 99337, "token": "简", "type": "中文单字"}
1171
- {"id": 99379, "token": "移到", "type": "中文多字"}
1172
- {"id": 99382, "token": ")”", "type": "中文标点"}
1173
- {"id": 99397, "token": "問", "type": "中文单字"}
1174
- {"id": 99480, "token": "功能", "type": "中文多字"}
1175
- {"id": 99496, "token": "若要", "type": "中文多字"}
1176
- {"id": 99502, "token": "长度", "type": "中文多字"}
1177
- {"id": 99563, "token": "—at", "type": "中文标点"}
1178
- {"id": 99643, "token": "】,【", "type": "中文标点"}
1179
- {"id": 99741, "token": "装", "type": "中文单字"}
1180
- {"id": 99750, "token": "感", "type": "中文单字"}
1181
- {"id": 99771, "token": "哈", "type": "中文单字"}
1182
- {"id": 99799, "token": "“One", "type": "中文标点"}
1183
- {"id": 99849, "token": "何", "type": "中文单字"}
1184
- {"id": 99941, "token": "预", "type": "中文单字"}
1185
- {"id": 100065, "token": "~\n\n", "type": "中文标点"}
1186
- {"id": 100066, "token": "送料", "type": "中文多字"}
1187
- {"id": 100067, "token": "…it", "type": "中文标点"}
1188
- {"id": 100179, "token": "尔", "type": "中文单字"}
1189
- {"id": 100207, "token": "在线", "type": "中文多字"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/fn_util.py ADDED
File without changes
utils/text_util.py CHANGED
@@ -1,6 +1,8 @@
1
 
2
 
3
 
 
 
4
  def is_chinese(uchar):
5
  """
6
  https://github.com/fxsjy/jieba/blob/master/jieba/__init__.py#L48
@@ -12,4 +14,20 @@ def is_chinese(uchar):
12
 
13
  def has_chinese(text):
14
  """ contains Chinese characters """
15
- return any(is_chinese(ch) for ch in text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
 
3
 
4
+
5
+
6
  def is_chinese(uchar):
7
  """
8
  https://github.com/fxsjy/jieba/blob/master/jieba/__init__.py#L48
 
14
 
15
  def has_chinese(text):
16
  """ contains Chinese characters """
17
+ return any(is_chinese(ch) for ch in text)
18
+
19
+
20
+ def get_zh_count(text):
21
+ return sum([is_chinese(uchar) for uchar in text])
22
+
23
+
24
+ def is_all_chinese(text):
25
+ return all(is_chinese(char) for char in text)
26
+
27
+
28
+ def get_digit_count(text):
29
+ digit_count = 0
30
+ for char in text:
31
+ if char in "0123456789":
32
+ digit_count += 1
33
+ return digit_count
utils/vocab.jd.txt.v2 DELETED
@@ -1,10268 +0,0 @@
1
- [PAD]
2
- [unused1]
3
- [unused2]
4
- [unused3]
5
- [unused4]
6
- [unused5]
7
- [unused6]
8
- [unused7]
9
- [unused8]
10
- [unused9]
11
- [unused10]
12
- [unused11]
13
- [unused12]
14
- [unused13]
15
- [unused14]
16
- [unused15]
17
- [unused16]
18
- [unused17]
19
- [unused18]
20
- [unused19]
21
- [unused20]
22
- [unused21]
23
- [unused22]
24
- [unused23]
25
- [unused24]
26
- [unused25]
27
- [unused26]
28
- [unused27]
29
- [unused28]
30
- [unused29]
31
- [unused30]
32
- [unused31]
33
- [unused32]
34
- [unused33]
35
- [unused34]
36
- [unused35]
37
- [unused36]
38
- [unused37]
39
- [unused38]
40
- [unused39]
41
- [unused40]
42
- [unused41]
43
- [unused42]
44
- [unused43]
45
- [unused44]
46
- [unused45]
47
- [unused46]
48
- [unused47]
49
- [unused48]
50
- [unused49]
51
- [unused50]
52
- [unused51]
53
- [unused52]
54
- [unused53]
55
- [unused54]
56
- [unused55]
57
- [unused56]
58
- [unused57]
59
- [unused58]
60
- [unused59]
61
- [unused60]
62
- [unused61]
63
- [unused62]
64
- [unused63]
65
- [unused64]
66
- [unused65]
67
- [unused66]
68
- [unused67]
69
- [unused68]
70
- [unused69]
71
- [unused70]
72
- [unused71]
73
- [unused72]
74
- [unused73]
75
- [unused74]
76
- [unused75]
77
- [unused76]
78
- [unused77]
79
- [unused78]
80
- [unused79]
81
- [unused80]
82
- [unused81]
83
- [unused82]
84
- [unused83]
85
- [unused84]
86
- [unused85]
87
- [unused86]
88
- [unused87]
89
- [unused88]
90
- [unused89]
91
- [unused90]
92
- [unused91]
93
- [unused92]
94
- [unused93]
95
- [unused94]
96
- [unused95]
97
- [unused96]
98
- [unused97]
99
- [unused98]
100
- [unused99]
101
- [UNK]
102
- [CLS]
103
- [SEP]
104
- [MASK]
105
- <S>
106
- <T>
107
- !
108
- "
109
-
110
-
111
-
112
-
113
-
114
-
115
-
116
- #
117
- $
118
- %
119
- &
120
- '
121
- (
122
- )
123
- *
124
- +
125
- ,
126
- -
127
- .
128
- /
129
- 0
130
- 1
131
- 2
132
- 3
133
- 4
134
- 5
135
- 6
136
- 7
137
- 8
138
- 9
139
- 10
140
- 11
141
- 12
142
- 13
143
- 14
144
- 15
145
- 16
146
- 17
147
- 18
148
- 19
149
- 20
150
- 21
151
- 22
152
- 23
153
- 24
154
- 25
155
- 26
156
- 27
157
- 28
158
- 29
159
- 30
160
- 31
161
- 32
162
- 33
163
- 34
164
- 35
165
- 36
166
- 37
167
- 38
168
- 39
169
- 40
170
- 41
171
- 42
172
- 43
173
- 44
174
- 45
175
- 46
176
- 47
177
- 48
178
- 49
179
- 50
180
- 51
181
- 52
182
- 53
183
- 54
184
- 55
185
- 56
186
- 57
187
- 58
188
- 59
189
- 60
190
- 61
191
- 62
192
- 63
193
- 64
194
- 65
195
- 66
196
- 67
197
- 68
198
- 69
199
- 70
200
- 71
201
- 72
202
- 73
203
- 74
204
- 75
205
- 76
206
- 77
207
- 78
208
- 79
209
- 80
210
- 81
211
- 82
212
- 83
213
- 84
214
- 85
215
- 86
216
- 87
217
- 88
218
- 89
219
- 90
220
- 91
221
- 92
222
- 93
223
- 94
224
- 95
225
- 96
226
- 97
227
- 98
228
- 99
229
- 100
230
- 120
231
- 128
232
- 180
233
- 200
234
- 256
235
- 304
236
- 360
237
- 500
238
- 512
239
- 1000
240
- 1080
241
- 2000
242
- 2014
243
- 2015
244
- 2016
245
- 2017
246
- 2018
247
- 2019
248
- 2020
249
- 2021
250
- 2022
251
- :
252
- ;
253
- <
254
- =
255
- >
256
- ?
257
- @
258
- [
259
- \
260
- ]
261
- ^
262
- _
263
- a
264
- b
265
- c
266
- d
267
- e
268
- f
269
- g
270
- h
271
- i
272
- j
273
- k
274
- l
275
- m
276
- n
277
- o
278
- p
279
- q
280
- r
281
- s
282
- t
283
- u
284
- v
285
- w
286
- x
287
- y
288
- z
289
- {
290
- |
291
- }
292
- ~
293
- £
294
- ¤
295
- ¥
296
- §
297
- «
298
- °
299
- ±
300
- ²
301
- ³
302
- µ
303
- ·
304
- ¹
305
- º
306
- »
307
- ¼
308
- ×
309
- ß
310
- æ
311
- ÷
312
- ø
313
- đ
314
- ŋ
315
- ɔ
316
- ə
317
- ɡ
318
- ʰ
319
- ˇ
320
- ˈ
321
- ˊ
322
- ˋ
323
- ˍ
324
- ː
325
- ˙
326
- ˚
327
- ˢ
328
- α
329
- β
330
- γ
331
- δ
332
- ε
333
- η
334
- θ
335
- ι
336
- κ
337
- λ
338
- μ
339
- ν
340
- ο
341
- π
342
- ρ
343
- ς
344
- σ
345
- τ
346
- υ
347
- φ
348
- χ
349
- ψ
350
- ω
351
- а
352
- б
353
- в
354
- г
355
- д
356
- е
357
- ж
358
- з
359
- и
360
- к
361
- л
362
- м
363
- н
364
- о
365
- п
366
- р
367
- с
368
- т
369
- у
370
- ф
371
- х
372
- ц
373
- ч
374
- ш
375
- ы
376
- ь
377
- я
378
- і
379
-
380
-
381
-
382
-
383
-
384
-
385
-
386
-
387
-
388
-
389
-
390
-
391
-
392
-
393
-
394
-
395
-
396
-
397
-
398
-
399
-
400
-
401
-
402
-
403
-
404
-
405
-
406
-
407
-
408
-
409
-
410
-
411
-
412
-
413
-
414
-
415
-
416
-
417
-
418
-
419
-
420
-
421
-
422
-
423
-
424
-
425
-
426
-
427
-
428
-
429
-
430
-
431
-
432
-
433
-
434
-
435
-
436
-
437
-
438
-
439
-
440
-
441
-
442
-
443
-
444
-
445
-
446
-
447
-
448
-
449
-
450
-
451
-
452
-
453
-
454
-
455
-
456
-
457
-
458
-
459
-
460
-
461
-
462
-
463
-
464
-
465
-
466
-
467
-
468
-
469
-
470
-
471
-
472
-
473
-
474
-
475
-
476
-
477
-
478
-
479
-
480
-
481
-
482
-
483
-
484
-
485
-
486
-
487
-
488
-
489
-
490
-
491
-
492
-
493
-
494
-
495
-
496
-
497
-
498
-
499
-
500
-
501
-
502
-
503
-
504
-
505
-
506
-
507
-
508
-
509
-
510
-
511
-
512
-
513
-
514
-
515
-
516
-
517
-
518
-
519
-
520
-
521
-
522
-
523
-
524
-
525
-
526
-
527
-
528
-
529
-
530
-
531
-
532
-
533
-
534
-
535
-
536
-
537
-
538
-
539
-
540
-
541
-
542
-
543
-
544
-
545
-
546
-
547
-
548
- ⦿
549
-
550
-
551
-
552
-
553
-
554
-
555
-
556
-
557
-
558
-
559
-
560
-
561
-
562
-
563
-
564
-
565
-
566
-
567
-
568
-
569
-
570
-
571
-
572
-
573
-
574
-
575
-
576
-
577
-
578
-
579
-
580
-
581
-
582
-
583
-
584
-
585
-
586
-
587
-
588
-
589
-
590
-
591
-
592
-
593
-
594
-
595
-
596
-
597
-
598
-
599
-
600
-
601
-
602
-
603
-
604
-
605
-
606
-
607
-
608
-
609
-
610
-
611
-
612
-
613
-
614
-
615
-
616
-
617
-
618
-
619
-
620
-
621
- 丿
622
-
623
-
624
-
625
-
626
-
627
-
628
-
629
-
630
-
631
-
632
-
633
-
634
-
635
-
636
-
637
-
638
-
639
-
640
-
641
-
642
-
643
-
644
-
645
-
646
-
647
-
648
-
649
-
650
-
651
-
652
-
653
-
654
-
655
-
656
-
657
-
658
-
659
-
660
-
661
-
662
-
663
-
664
-
665
-
666
-
667
-
668
-
669
-
670
-
671
-
672
-
673
-
674
-
675
-
676
-
677
-
678
-
679
-
680
-
681
-
682
-
683
-
684
- 亿
685
-
686
-
687
-
688
-
689
-
690
-
691
-
692
-
693
-
694
-
695
-
696
-
697
-
698
-
699
-
700
-
701
-
702
-
703
-
704
-
705
-
706
-
707
-
708
-
709
-
710
-
711
-
712
-
713
-
714
-
715
-
716
-
717
-
718
-
719
-
720
-
721
- 仿
722
-
723
-
724
-
725
-
726
-
727
-
728
-
729
-
730
-
731
-
732
-
733
-
734
-
735
-
736
-
737
-
738
-
739
-
740
-
741
-
742
-
743
-
744
-
745
-
746
-
747
-
748
-
749
-
750
-
751
-
752
-
753
-
754
-
755
-
756
-
757
-
758
-
759
-
760
-
761
-
762
-
763
-
764
-
765
-
766
-
767
-
768
-
769
-
770
-
771
-
772
-
773
-
774
-
775
-
776
-
777
-
778
-
779
-
780
-
781
-
782
-
783
-
784
- 使
785
-
786
-
787
-
788
-
789
-
790
-
791
-
792
-
793
-
794
-
795
-
796
-
797
-
798
-
799
-
800
-
801
-
802
-
803
-
804
-
805
-
806
-
807
- 便
808
-
809
-
810
-
811
-
812
-
813
-
814
-
815
-
816
-
817
-
818
-
819
-
820
-
821
-
822
-
823
-
824
-
825
-
826
-
827
-
828
-
829
-
830
-
831
-
832
-
833
-
834
-
835
-
836
-
837
-
838
-
839
-
840
-
841
-
842
-
843
-
844
-
845
-
846
-
847
-
848
-
849
-
850
-
851
-
852
-
853
-
854
-
855
-
856
-
857
-
858
-
859
-
860
-
861
-
862
-
863
-
864
-
865
-
866
-
867
-
868
-
869
-
870
-
871
-
872
-
873
-
874
-
875
-
876
-
877
-
878
-
879
-
880
-
881
-
882
-
883
-
884
-
885
-
886
-
887
-
888
-
889
-
890
-
891
-
892
-
893
-
894
-
895
-
896
-
897
-
898
-
899
-
900
-
901
-
902
-
903
-
904
-
905
-
906
-
907
-
908
-
909
-
910
-
911
-
912
-
913
-
914
-
915
-
916
-
917
-
918
-
919
-
920
-
921
-
922
-
923
-
924
-
925
-
926
-
927
-
928
-
929
-
930
-
931
-
932
-
933
-
934
-
935
-
936
-
937
-
938
-
939
-
940
-
941
- ��
942
-
943
-
944
-
945
-
946
-
947
-
948
-
949
-
950
-
951
-
952
-
953
-
954
-
955
-
956
-
957
-
958
-
959
-
960
-
961
-
962
-
963
-
964
-
965
-
966
-
967
-
968
-
969
-
970
-
971
-
972
-
973
-
974
-
975
-
976
-
977
-
978
-
979
-
980
-
981
-
982
-
983
-
984
-
985
-
986
-
987
-
988
-
989
-
990
-
991
-
992
-
993
-
994
-
995
-
996
-
997
-
998
-
999
-
1000
-
1001
-
1002
-
1003
-
1004
-
1005
-
1006
-
1007
-
1008
-
1009
-
1010
-
1011
-
1012
-
1013
-
1014
-
1015
-
1016
-
1017
-
1018
-
1019
-
1020
-
1021
-
1022
-
1023
-
1024
-
1025
-
1026
-
1027
-
1028
-
1029
-
1030
-
1031
-
1032
-
1033
-
1034
-
1035
-
1036
-
1037
-
1038
-
1039
-
1040
-
1041
-
1042
-
1043
-
1044
-
1045
-
1046
-
1047
-
1048
-
1049
-
1050
-
1051
-
1052
-
1053
-
1054
-
1055
-
1056
-
1057
-
1058
-
1059
-
1060
-
1061
-
1062
-
1063
-
1064
-
1065
-
1066
-
1067
-
1068
-
1069
-
1070
-
1071
-
1072
-
1073
-
1074
-
1075
-
1076
-
1077
-
1078
-
1079
-
1080
-
1081
-
1082
-
1083
-
1084
-
1085
-
1086
-
1087
-
1088
-
1089
-
1090
-
1091
-
1092
-
1093
-
1094
-
1095
-
1096
-
1097
-
1098
-
1099
-
1100
-
1101
-
1102
-
1103
-
1104
-
1105
-
1106
-
1107
-
1108
-
1109
-
1110
-
1111
-
1112
-
1113
-
1114
-
1115
-
1116
-
1117
-
1118
-
1119
-
1120
-
1121
-
1122
-
1123
-
1124
-
1125
-
1126
-
1127
-
1128
-
1129
-
1130
-
1131
-
1132
-
1133
-
1134
-
1135
-
1136
-
1137
-
1138
-
1139
-
1140
-
1141
-
1142
-
1143
-
1144
-
1145
-
1146
-
1147
-
1148
-
1149
-
1150
-
1151
-
1152
-
1153
-
1154
-
1155
-
1156
-
1157
-
1158
-
1159
-
1160
-
1161
-
1162
-
1163
-
1164
-
1165
-
1166
-
1167
-
1168
-
1169
-
1170
-
1171
-
1172
-
1173
-
1174
-
1175
-
1176
-
1177
-
1178
-
1179
-
1180
-
1181
-
1182
-
1183
-
1184
-
1185
-
1186
-
1187
-
1188
-
1189
-
1190
-
1191
-
1192
-
1193
-
1194
-
1195
-
1196
-
1197
-
1198
-
1199
-
1200
-
1201
-
1202
-
1203
-
1204
-
1205
-
1206
-
1207
-
1208
-
1209
-
1210
-
1211
-
1212
-
1213
-
1214
-
1215
-
1216
-
1217
-
1218
-
1219
-
1220
-
1221
-
1222
-
1223
-
1224
-
1225
-
1226
-
1227
-
1228
-
1229
-
1230
-
1231
-
1232
-
1233
-
1234
-
1235
-
1236
-
1237
-
1238
-
1239
-
1240
-
1241
-
1242
-
1243
-
1244
-
1245
-
1246
-
1247
-
1248
-
1249
-
1250
-
1251
-
1252
-
1253
-
1254
-
1255
-
1256
-
1257
-
1258
-
1259
-
1260
-
1261
-
1262
-
1263
-
1264
-
1265
-
1266
-
1267
-
1268
-
1269
-
1270
-
1271
-
1272
-
1273
-
1274
-
1275
-
1276
-
1277
-
1278
-
1279
-
1280
-
1281
-
1282
-
1283
-
1284
-
1285
-
1286
-
1287
-
1288
-
1289
-
1290
-
1291
-
1292
-
1293
-
1294
-
1295
-
1296
-
1297
-
1298
-
1299
-
1300
-
1301
-
1302
-
1303
-
1304
-
1305
-
1306
-
1307
-
1308
-
1309
-
1310
-
1311
-
1312
-
1313
-
1314
-
1315
-
1316
-
1317
-
1318
-
1319
-
1320
-
1321
-
1322
-
1323
-
1324
-
1325
-
1326
-
1327
-
1328
-
1329
-
1330
-
1331
-
1332
-
1333
-
1334
-
1335
-
1336
-
1337
-
1338
-
1339
-
1340
-
1341
-
1342
-
1343
-
1344
-
1345
-
1346
-
1347
-
1348
-
1349
-
1350
-
1351
-
1352
-
1353
-
1354
-
1355
-
1356
-
1357
-
1358
-
1359
-
1360
-
1361
-
1362
-
1363
-
1364
-
1365
-
1366
-
1367
-
1368
-
1369
-
1370
-
1371
-
1372
-
1373
-
1374
-
1375
-
1376
-
1377
-
1378
-
1379
-
1380
-
1381
-
1382
-
1383
-
1384
-
1385
-
1386
-
1387
-
1388
-
1389
-
1390
-
1391
-
1392
-
1393
-
1394
-
1395
-
1396
-
1397
-
1398
-
1399
-
1400
-
1401
-
1402
-
1403
-
1404
-
1405
-
1406
-
1407
-
1408
-
1409
-
1410
-
1411
-
1412
-
1413
-
1414
-
1415
-
1416
-
1417
-
1418
-
1419
-
1420
-
1421
-
1422
-
1423
-
1424
-
1425
-
1426
-
1427
-
1428
-
1429
-
1430
-
1431
-
1432
-
1433
-
1434
-
1435
-
1436
-
1437
-
1438
-
1439
-
1440
-
1441
-
1442
-
1443
-
1444
-
1445
-
1446
-
1447
-
1448
-
1449
-
1450
-
1451
-
1452
-
1453
-
1454
-
1455
-
1456
-
1457
-
1458
-
1459
-
1460
-
1461
-
1462
-
1463
-
1464
-
1465
-
1466
-
1467
-
1468
-
1469
-
1470
-
1471
-
1472
-
1473
-
1474
-
1475
-
1476
-
1477
-
1478
-
1479
-
1480
-
1481
-
1482
-
1483
-
1484
-
1485
-
1486
-
1487
-
1488
-
1489
-
1490
-
1491
-
1492
-
1493
-
1494
-
1495
-
1496
-
1497
-
1498
-
1499
-
1500
-
1501
-
1502
-
1503
-
1504
-
1505
-
1506
-
1507
-
1508
-
1509
-
1510
-
1511
-
1512
-
1513
-
1514
-
1515
-
1516
-
1517
-
1518
-
1519
-
1520
-
1521
-
1522
-
1523
-
1524
-
1525
-
1526
-
1527
-
1528
-
1529
-
1530
-
1531
-
1532
-
1533
-
1534
-
1535
-
1536
-
1537
-
1538
-
1539
-
1540
-
1541
-
1542
-
1543
-
1544
-
1545
-
1546
-
1547
-
1548
-
1549
-
1550
-
1551
-
1552
-
1553
-
1554
-
1555
-
1556
-
1557
-
1558
-
1559
-
1560
-
1561
-
1562
-
1563
-
1564
-
1565
-
1566
-
1567
-
1568
-
1569
-
1570
-
1571
-
1572
-
1573
-
1574
-
1575
-
1576
-
1577
-
1578
-
1579
-
1580
-
1581
-
1582
-
1583
-
1584
-
1585
-
1586
-
1587
-
1588
-
1589
-
1590
-
1591
-
1592
-
1593
-
1594
-
1595
-
1596
-
1597
-
1598
-
1599
-
1600
-
1601
-
1602
-
1603
-
1604
-
1605
-
1606
-
1607
-
1608
-
1609
-
1610
-
1611
-
1612
-
1613
-
1614
-
1615
-
1616
-
1617
-
1618
-
1619
-
1620
-
1621
-
1622
-
1623
-
1624
-
1625
-
1626
-
1627
-
1628
-
1629
-
1630
-
1631
-
1632
-
1633
-
1634
-
1635
-
1636
-
1637
-
1638
-
1639
-
1640
-
1641
-
1642
-
1643
-
1644
-
1645
-
1646
-
1647
-
1648
-
1649
-
1650
-
1651
-
1652
-
1653
-
1654
-
1655
-
1656
-
1657
-
1658
-
1659
-
1660
-
1661
-
1662
-
1663
-
1664
-
1665
-
1666
-
1667
-
1668
-
1669
-
1670
-
1671
-
1672
-
1673
-
1674
-
1675
-
1676
-
1677
-
1678
-
1679
-
1680
-
1681
-
1682
-
1683
-
1684
-
1685
-
1686
-
1687
-
1688
-
1689
-
1690
-
1691
-
1692
-
1693
-
1694
-
1695
-
1696
-
1697
-
1698
-
1699
-
1700
-
1701
-
1702
-
1703
-
1704
-
1705
-
1706
-
1707
-
1708
-
1709
-
1710
-
1711
-
1712
-
1713
-
1714
-
1715
-
1716
-
1717
-
1718
-
1719
-
1720
-
1721
-
1722
-
1723
-
1724
-
1725
-
1726
-
1727
-
1728
-
1729
-
1730
-
1731
-
1732
-
1733
-
1734
-
1735
-
1736
- 姿
1737
-
1738
-
1739
-
1740
-
1741
-
1742
-
1743
-
1744
-
1745
-
1746
-
1747
-
1748
-
1749
-
1750
-
1751
-
1752
-
1753
-
1754
-
1755
-
1756
-
1757
-
1758
-
1759
-
1760
-
1761
-
1762
-
1763
-
1764
-
1765
-
1766
-
1767
-
1768
-
1769
-
1770
-
1771
-
1772
- 婿
1773
-
1774
-
1775
-
1776
-
1777
-
1778
-
1779
-
1780
-
1781
-
1782
-
1783
-
1784
-
1785
-
1786
-
1787
-
1788
-
1789
-
1790
-
1791
-
1792
-
1793
-
1794
-
1795
-
1796
-
1797
-
1798
-
1799
-
1800
-
1801
- 嬿
1802
-
1803
-
1804
-
1805
-
1806
-
1807
-
1808
-
1809
-
1810
-
1811
-
1812
-
1813
-
1814
-
1815
-
1816
-
1817
-
1818
-
1819
-
1820
-
1821
-
1822
-
1823
-
1824
-
1825
-
1826
-
1827
-
1828
-
1829
-
1830
-
1831
-
1832
-
1833
-
1834
-
1835
-
1836
-
1837
-
1838
-
1839
-
1840
-
1841
-
1842
-
1843
-
1844
-
1845
-
1846
-
1847
-
1848
-
1849
-
1850
-
1851
-
1852
-
1853
-
1854
-
1855
-
1856
-
1857
-
1858
-
1859
-
1860
-
1861
-
1862
-
1863
-
1864
-
1865
-
1866
-
1867
-
1868
- 宿
1869
-
1870
-
1871
-
1872
-
1873
-
1874
-
1875
-
1876
-
1877
-
1878
-
1879
-
1880
-
1881
-
1882
-
1883
-
1884
-
1885
-
1886
-
1887
-
1888
-
1889
-
1890
-
1891
-
1892
-
1893
- 寿
1894
-
1895
-
1896
-
1897
-
1898
-
1899
-
1900
-
1901
-
1902
-
1903
-
1904
-
1905
-
1906
-
1907
-
1908
-
1909
-
1910
-
1911
-
1912
-
1913
-
1914
-
1915
-
1916
-
1917
-
1918
-
1919
-
1920
- 尿
1921
-
1922
-
1923
-
1924
-
1925
-
1926
-
1927
-
1928
-
1929
-
1930
-
1931
-
1932
-
1933
-
1934
-
1935
-
1936
-
1937
-
1938
-
1939
-
1940
-
1941
-
1942
-
1943
- 屿
1944
-
1945
-
1946
-
1947
-
1948
-
1949
-
1950
-
1951
-
1952
-
1953
-
1954
-
1955
-
1956
-
1957
-
1958
-
1959
-
1960
-
1961
-
1962
-
1963
-
1964
-
1965
- ��
1966
-
1967
-
1968
-
1969
-
1970
-
1971
-
1972
-
1973
-
1974
-
1975
-
1976
-
1977
-
1978
-
1979
-
1980
-
1981
-
1982
-
1983
-
1984
-
1985
-
1986
-
1987
-
1988
-
1989
-
1990
-
1991
-
1992
-
1993
-
1994
-
1995
-
1996
-
1997
-
1998
-
1999
-
2000
-
2001
-
2002
-
2003
-
2004
-
2005
-
2006
-
2007
-
2008
-
2009
-
2010
-
2011
-
2012
-
2013
-
2014
-
2015
-
2016
-
2017
-
2018
-
2019
-
2020
-
2021
-
2022
-
2023
-
2024
-
2025
-
2026
-
2027
- 巿
2028
-
2029
-
2030
-
2031
-
2032
-
2033
-
2034
-
2035
-
2036
-
2037
-
2038
-
2039
-
2040
-
2041
-
2042
-
2043
-
2044
-
2045
-
2046
-
2047
-
2048
-
2049
-
2050
-
2051
-
2052
-
2053
-
2054
-
2055
-
2056
-
2057
-
2058
-
2059
-
2060
-
2061
-
2062
-
2063
-
2064
-
2065
-
2066
-
2067
-
2068
-
2069
-
2070
- 广
2071
-
2072
-
2073
-
2074
-
2075
-
2076
-
2077
-
2078
-
2079
-
2080
-
2081
-
2082
-
2083
-
2084
-
2085
-
2086
-
2087
-
2088
-
2089
-
2090
-
2091
-
2092
-
2093
-
2094
-
2095
-
2096
-
2097
-
2098
-
2099
-
2100
-
2101
-
2102
-
2103
-
2104
-
2105
-
2106
-
2107
- 廿
2108
-
2109
-
2110
-
2111
-
2112
-
2113
-
2114
-
2115
-
2116
-
2117
-
2118
-
2119
-
2120
-
2121
-
2122
-
2123
-
2124
-
2125
-
2126
-
2127
-
2128
-
2129
-
2130
-
2131
-
2132
-
2133
-
2134
-
2135
-
2136
-
2137
-
2138
-
2139
-
2140
-
2141
-
2142
-
2143
-
2144
-
2145
-
2146
-
2147
-
2148
-
2149
-
2150
-
2151
-
2152
-
2153
-
2154
-
2155
-
2156
-
2157
-
2158
- 彿
2159
-
2160
-
2161
-
2162
-
2163
-
2164
-
2165
-
2166
-
2167
-
2168
-
2169
-
2170
-
2171
-
2172
-
2173
-
2174
-
2175
-
2176
-
2177
-
2178
-
2179
-
2180
-
2181
-
2182
-
2183
-
2184
-
2185
-
2186
-
2187
-
2188
-
2189
-
2190
-
2191
-
2192
-
2193
-
2194
-
2195
-
2196
-
2197
-
2198
-
2199
-
2200
-
2201
-
2202
-
2203
-
2204
-
2205
-
2206
-
2207
-
2208
-
2209
-
2210
- 忿
2211
- 怀
2212
-
2213
-
2214
-
2215
-
2216
-
2217
-
2218
-
2219
-
2220
-
2221
-
2222
-
2223
-
2224
-
2225
-
2226
-
2227
-
2228
-
2229
-
2230
-
2231
-
2232
-
2233
-
2234
-
2235
-
2236
-
2237
-
2238
-
2239
-
2240
-
2241
-
2242
-
2243
-
2244
-
2245
-
2246
-
2247
-
2248
-
2249
-
2250
-
2251
-
2252
-
2253
-
2254
-
2255
-
2256
-
2257
-
2258
-
2259
-
2260
-
2261
-
2262
-
2263
-
2264
-
2265
-
2266
-
2267
-
2268
-
2269
-
2270
-
2271
-
2272
-
2273
-
2274
-
2275
-
2276
-
2277
-
2278
-
2279
-
2280
-
2281
-
2282
-
2283
-
2284
-
2285
-
2286
-
2287
-
2288
-
2289
-
2290
-
2291
-
2292
-
2293
-
2294
-
2295
-
2296
-
2297
-
2298
-
2299
-
2300
-
2301
-
2302
-
2303
-
2304
-
2305
-
2306
-
2307
-
2308
-
2309
-
2310
-
2311
-
2312
-
2313
-
2314
-
2315
-
2316
-
2317
-
2318
-
2319
-
2320
-
2321
-
2322
-
2323
-
2324
-
2325
-
2326
-
2327
-
2328
-
2329
-
2330
-
2331
-
2332
-
2333
-
2334
-
2335
-
2336
-
2337
-
2338
-
2339
-
2340
-
2341
-
2342
-
2343
-
2344
-
2345
-
2346
-
2347
-
2348
-
2349
-
2350
-
2351
-
2352
-
2353
-
2354
-
2355
-
2356
-
2357
-
2358
-
2359
-
2360
-
2361
-
2362
-
2363
-
2364
-
2365
-
2366
-
2367
-
2368
-
2369
-
2370
-
2371
-
2372
-
2373
-
2374
-
2375
-
2376
-
2377
-
2378
-
2379
-
2380
-
2381
-
2382
-
2383
-
2384
-
2385
-
2386
-
2387
-
2388
-
2389
-
2390
-
2391
-
2392
-
2393
-
2394
-
2395
-
2396
-
2397
-
2398
-
2399
-
2400
-
2401
-
2402
-
2403
-
2404
-
2405
-
2406
-
2407
-
2408
-
2409
-
2410
-
2411
-
2412
-
2413
-
2414
-
2415
-
2416
-
2417
-
2418
-
2419
-
2420
-
2421
-
2422
-
2423
-
2424
-
2425
-
2426
-
2427
-
2428
-
2429
-
2430
-
2431
-
2432
-
2433
-
2434
-
2435
-
2436
-
2437
-
2438
-
2439
-
2440
-
2441
-
2442
-
2443
-
2444
-
2445
-
2446
-
2447
-
2448
-
2449
-
2450
-
2451
-
2452
-
2453
-
2454
-
2455
-
2456
-
2457
-
2458
-
2459
-
2460
-
2461
-
2462
-
2463
-
2464
-
2465
-
2466
-
2467
-
2468
-
2469
-
2470
-
2471
-
2472
-
2473
-
2474
-
2475
-
2476
-
2477
-
2478
-
2479
-
2480
-
2481
-
2482
-
2483
-
2484
-
2485
-
2486
-
2487
-
2488
-
2489
-
2490
-
2491
-
2492
-
2493
-
2494
-
2495
-
2496
-
2497
-
2498
-
2499
-
2500
-
2501
-
2502
-
2503
-
2504
-
2505
-
2506
-
2507
-
2508
-
2509
-
2510
-
2511
-
2512
-
2513
-
2514
-
2515
-
2516
-
2517
-
2518
-
2519
-
2520
-
2521
-
2522
-
2523
-
2524
-
2525
-
2526
-
2527
-
2528
-
2529
-
2530
-
2531
-
2532
-
2533
-
2534
-
2535
-
2536
-
2537
-
2538
-
2539
-
2540
-
2541
-
2542
-
2543
-
2544
-
2545
-
2546
-
2547
-
2548
-
2549
-
2550
-
2551
-
2552
-
2553
-
2554
-
2555
-
2556
-
2557
-
2558
-
2559
-
2560
-
2561
-
2562
-
2563
-
2564
-
2565
-
2566
-
2567
-
2568
-
2569
-
2570
-
2571
-
2572
-
2573
-
2574
-
2575
-
2576
-
2577
-
2578
-
2579
-
2580
-
2581
-
2582
-
2583
-
2584
-
2585
-
2586
-
2587
-
2588
-
2589
-
2590
-
2591
-
2592
-
2593
-
2594
-
2595
-
2596
-
2597
-
2598
-
2599
-
2600
-
2601
-
2602
-
2603
-
2604
-
2605
-
2606
-
2607
-
2608
-
2609
-
2610
-
2611
-
2612
-
2613
-
2614
-
2615
-
2616
-
2617
-
2618
-
2619
-
2620
-
2621
-
2622
-
2623
-
2624
-
2625
-
2626
-
2627
-
2628
-
2629
-
2630
-
2631
-
2632
-
2633
-
2634
-
2635
-
2636
-
2637
-
2638
-
2639
-
2640
-
2641
-
2642
-
2643
-
2644
-
2645
-
2646
-
2647
-
2648
-
2649
-
2650
-
2651
-
2652
-
2653
-
2654
-
2655
-
2656
-
2657
-
2658
-
2659
-
2660
-
2661
-
2662
-
2663
-
2664
-
2665
-
2666
-
2667
-
2668
-
2669
-
2670
-
2671
-
2672
-
2673
-
2674
-
2675
-
2676
-
2677
-
2678
-
2679
-
2680
-
2681
-
2682
-
2683
-
2684
-
2685
-
2686
-
2687
-
2688
-
2689
-
2690
-
2691
-
2692
-
2693
-
2694
-
2695
-
2696
-
2697
-
2698
-
2699
-
2700
-
2701
-
2702
-
2703
-
2704
-
2705
-
2706
-
2707
-
2708
-
2709
-
2710
-
2711
-
2712
-
2713
-
2714
-
2715
-
2716
-
2717
-
2718
-
2719
-
2720
-
2721
-
2722
-
2723
-
2724
-
2725
-
2726
-
2727
-
2728
-
2729
-
2730
-
2731
-
2732
-
2733
-
2734
-
2735
-
2736
-
2737
-
2738
-
2739
-
2740
-
2741
-
2742
-
2743
-
2744
-
2745
-
2746
-
2747
-
2748
-
2749
-
2750
-
2751
-
2752
-
2753
-
2754
-
2755
-
2756
-
2757
-
2758
-
2759
-
2760
-
2761
-
2762
-
2763
-
2764
-
2765
-
2766
-
2767
-
2768
-
2769
-
2770
-
2771
-
2772
-
2773
-
2774
-
2775
-
2776
-
2777
-
2778
-
2779
-
2780
-
2781
-
2782
-
2783
-
2784
-
2785
-
2786
-
2787
-
2788
-
2789
-
2790
-
2791
-
2792
-
2793
-
2794
-
2795
-
2796
-
2797
-
2798
-
2799
-
2800
-
2801
-
2802
-
2803
-
2804
-
2805
-
2806
-
2807
-
2808
-
2809
-
2810
-
2811
-
2812
-
2813
-
2814
-
2815
-
2816
-
2817
-
2818
-
2819
-
2820
-
2821
-
2822
-
2823
-
2824
-
2825
-
2826
-
2827
-
2828
-
2829
-
2830
-
2831
-
2832
-
2833
-
2834
-
2835
-
2836
-
2837
-
2838
-
2839
-
2840
-
2841
-
2842
-
2843
-
2844
-
2845
-
2846
-
2847
-
2848
-
2849
-
2850
-
2851
-
2852
-
2853
-
2854
-
2855
-
2856
-
2857
-
2858
-
2859
-
2860
-
2861
-
2862
-
2863
-
2864
-
2865
-
2866
-
2867
-
2868
-
2869
-
2870
-
2871
-
2872
-
2873
-
2874
-
2875
-
2876
-
2877
-
2878
-
2879
-
2880
-
2881
-
2882
-
2883
-
2884
-
2885
-
2886
-
2887
-
2888
-
2889
-
2890
-
2891
-
2892
-
2893
-
2894
-
2895
-
2896
-
2897
-
2898
-
2899
-
2900
-
2901
-
2902
-
2903
-
2904
-
2905
-
2906
-
2907
-
2908
-
2909
-
2910
-
2911
-
2912
-
2913
-
2914
-
2915
-
2916
-
2917
-
2918
-
2919
-
2920
-
2921
-
2922
-
2923
-
2924
-
2925
-
2926
-
2927
-
2928
-
2929
-
2930
-
2931
-
2932
-
2933
-
2934
-
2935
-
2936
-
2937
-
2938
-
2939
-
2940
-
2941
-
2942
-
2943
-
2944
-
2945
-
2946
-
2947
-
2948
-
2949
-
2950
-
2951
-
2952
-
2953
-
2954
-
2955
-
2956
-
2957
-
2958
-
2959
-
2960
-
2961
-
2962
-
2963
-
2964
-
2965
-
2966
-
2967
-
2968
-
2969
-
2970
-
2971
-
2972
-
2973
-
2974
-
2975
-
2976
-
2977
-
2978
-
2979
-
2980
-
2981
-
2982
-
2983
-
2984
-
2985
-
2986
-
2987
-
2988
-
2989
- ��
2990
-
2991
-
2992
-
2993
-
2994
-
2995
-
2996
-
2997
-
2998
- 椿
2999
-
3000
-
3001
-
3002
-
3003
-
3004
-
3005
-
3006
-
3007
-
3008
-
3009
-
3010
-
3011
-
3012
-
3013
-
3014
-
3015
-
3016
-
3017
-
3018
-
3019
-
3020
-
3021
-
3022
-
3023
-
3024
-
3025
-
3026
-
3027
-
3028
-
3029
-
3030
-
3031
-
3032
-
3033
-
3034
-
3035
-
3036
-
3037
-
3038
-
3039
-
3040
-
3041
-
3042
-
3043
- 槿
3044
-
3045
-
3046
-
3047
-
3048
-
3049
-
3050
-
3051
-
3052
-
3053
-
3054
-
3055
-
3056
-
3057
-
3058
-
3059
-
3060
-
3061
-
3062
-
3063
-
3064
-
3065
-
3066
-
3067
-
3068
-
3069
-
3070
-
3071
-
3072
-
3073
-
3074
-
3075
-
3076
-
3077
-
3078
-
3079
-
3080
-
3081
-
3082
-
3083
-
3084
-
3085
-
3086
-
3087
-
3088
-
3089
-
3090
-
3091
-
3092
-
3093
-
3094
-
3095
-
3096
-
3097
-
3098
-
3099
-
3100
-
3101
-
3102
-
3103
-
3104
-
3105
-
3106
-
3107
-
3108
-
3109
-
3110
-
3111
-
3112
-
3113
-
3114
-
3115
-
3116
-
3117
- 殿
3118
-
3119
-
3120
-
3121
-
3122
-
3123
-
3124
-
3125
-
3126
-
3127
-
3128
-
3129
-
3130
-
3131
-
3132
-
3133
-
3134
-
3135
-
3136
-
3137
-
3138
-
3139
-
3140
-
3141
-
3142
-
3143
-
3144
-
3145
-
3146
-
3147
-
3148
-
3149
-
3150
-
3151
-
3152
-
3153
-
3154
-
3155
-
3156
-
3157
-
3158
-
3159
-
3160
-
3161
-
3162
-
3163
-
3164
-
3165
-
3166
-
3167
-
3168
-
3169
-
3170
-
3171
-
3172
-
3173
-
3174
-
3175
-
3176
-
3177
-
3178
-
3179
-
3180
-
3181
-
3182
-
3183
-
3184
-
3185
-
3186
-
3187
-
3188
-
3189
-
3190
-
3191
-
3192
-
3193
-
3194
-
3195
-
3196
-
3197
-
3198
-
3199
-
3200
-
3201
-
3202
-
3203
-
3204
-
3205
-
3206
-
3207
-
3208
-
3209
-
3210
-
3211
-
3212
-
3213
-
3214
-
3215
-
3216
-
3217
-
3218
-
3219
-
3220
-
3221
- 沿
3222
-
3223
-
3224
-
3225
-
3226
-
3227
-
3228
-
3229
-
3230
-
3231
-
3232
-
3233
-
3234
-
3235
-
3236
-
3237
-
3238
-
3239
-
3240
-
3241
-
3242
-
3243
-
3244
-
3245
-
3246
-
3247
-
3248
-
3249
-
3250
-
3251
-
3252
-
3253
-
3254
-
3255
-
3256
-
3257
-
3258
-
3259
-
3260
-
3261
-
3262
-
3263
-
3264
-
3265
-
3266
-
3267
-
3268
-
3269
-
3270
-
3271
-
3272
-
3273
-
3274
-
3275
-
3276
-
3277
-
3278
-
3279
-
3280
-
3281
-
3282
-
3283
-
3284
-
3285
-
3286
-
3287
-
3288
-
3289
-
3290
-
3291
-
3292
-
3293
-
3294
-
3295
-
3296
-
3297
-
3298
-
3299
-
3300
-
3301
-
3302
-
3303
-
3304
-
3305
-
3306
-
3307
-
3308
-
3309
-
3310
-
3311
-
3312
-
3313
-
3314
-
3315
-
3316
-
3317
-
3318
-
3319
-
3320
-
3321
-
3322
-
3323
-
3324
-
3325
-
3326
-
3327
- 涿
3328
-
3329
-
3330
-
3331
-
3332
-
3333
-
3334
-
3335
-
3336
-
3337
-
3338
-
3339
-
3340
-
3341
-
3342
-
3343
-
3344
-
3345
-
3346
-
3347
-
3348
-
3349
-
3350
-
3351
-
3352
-
3353
-
3354
-
3355
-
3356
-
3357
-
3358
-
3359
-
3360
-
3361
-
3362
-
3363
-
3364
-
3365
-
3366
-
3367
-
3368
-
3369
-
3370
-
3371
-
3372
-
3373
-
3374
-
3375
-
3376
-
3377
-
3378
-
3379
-
3380
-
3381
-
3382
-
3383
-
3384
-
3385
-
3386
-
3387
-
3388
- 湿
3389
-
3390
-
3391
-
3392
-
3393
-
3394
-
3395
-
3396
-
3397
-
3398
-
3399
-
3400
-
3401
-
3402
-
3403
-
3404
-
3405
-
3406
-
3407
-
3408
-
3409
-
3410
-
3411
-
3412
-
3413
-
3414
-
3415
-
3416
-
3417
-
3418
-
3419
-
3420
-
3421
-
3422
-
3423
-
3424
-
3425
-
3426
-
3427
-
3428
-
3429
-
3430
-
3431
-
3432
-
3433
-
3434
-
3435
-
3436
-
3437
-
3438
-
3439
-
3440
-
3441
-
3442
-
3443
-
3444
-
3445
-
3446
-
3447
-
3448
-
3449
-
3450
-
3451
-
3452
-
3453
-
3454
-
3455
-
3456
-
3457
-
3458
-
3459
-
3460
-
3461
-
3462
-
3463
-
3464
-
3465
-
3466
-
3467
-
3468
-
3469
-
3470
-
3471
-
3472
-
3473
-
3474
-
3475
-
3476
-
3477
-
3478
-
3479
-
3480
-
3481
-
3482
-
3483
-
3484
-
3485
-
3486
-
3487
-
3488
-
3489
-
3490
-
3491
-
3492
-
3493
-
3494
-
3495
-
3496
-
3497
-
3498
-
3499
-
3500
-
3501
-
3502
-
3503
-
3504
-
3505
-
3506
-
3507
-
3508
-
3509
-
3510
-
3511
-
3512
-
3513
-
3514
-
3515
-
3516
-
3517
-
3518
-
3519
-
3520
-
3521
-
3522
-
3523
-
3524
-
3525
-
3526
-
3527
-
3528
-
3529
-
3530
-
3531
-
3532
-
3533
-
3534
-
3535
-
3536
-
3537
-
3538
-
3539
-
3540
-
3541
-
3542
-
3543
-
3544
-
3545
-
3546
-
3547
-
3548
-
3549
-
3550
-
3551
-
3552
-
3553
-
3554
-
3555
-
3556
-
3557
-
3558
-
3559
-
3560
-
3561
-
3562
-
3563
-
3564
-
3565
-
3566
-
3567
-
3568
-
3569
-
3570
-
3571
-
3572
-
3573
-
3574
-
3575
-
3576
-
3577
-
3578
-
3579
-
3580
-
3581
-
3582
-
3583
-
3584
-
3585
-
3586
-
3587
-
3588
-
3589
-
3590
-
3591
-
3592
-
3593
-
3594
-
3595
-
3596
-
3597
-
3598
-
3599
-
3600
-
3601
-
3602
-
3603
-
3604
-
3605
-
3606
-
3607
-
3608
-
3609
-
3610
-
3611
-
3612
-
3613
-
3614
-
3615
-
3616
-
3617
-
3618
-
3619
-
3620
-
3621
-
3622
-
3623
-
3624
-
3625
-
3626
-
3627
-
3628
-
3629
-
3630
-
3631
-
3632
-
3633
-
3634
-
3635
-
3636
-
3637
-
3638
-
3639
-
3640
-
3641
-
3642
-
3643
-
3644
-
3645
-
3646
-
3647
-
3648
-
3649
-
3650
-
3651
-
3652
-
3653
-
3654
-
3655
-
3656
-
3657
-
3658
-
3659
-
3660
-
3661
-
3662
-
3663
-
3664
-
3665
-
3666
-
3667
-
3668
-
3669
-
3670
-
3671
-
3672
-
3673
-
3674
-
3675
-
3676
-
3677
-
3678
-
3679
-
3680
-
3681
-
3682
-
3683
-
3684
-
3685
-
3686
-
3687
-
3688
-
3689
-
3690
-
3691
-
3692
-
3693
-
3694
-
3695
-
3696
-
3697
-
3698
-
3699
-
3700
-
3701
-
3702
-
3703
-
3704
-
3705
-
3706
-
3707
-
3708
-
3709
-
3710
-
3711
-
3712
-
3713
-
3714
-
3715
-
3716
-
3717
-
3718
-
3719
-
3720
-
3721
-
3722
-
3723
-
3724
-
3725
-
3726
-
3727
-
3728
-
3729
-
3730
-
3731
-
3732
-
3733
-
3734
-
3735
-
3736
-
3737
-
3738
-
3739
-
3740
-
3741
-
3742
-
3743
-
3744
-
3745
-
3746
-
3747
-
3748
-
3749
-
3750
-
3751
-
3752
-
3753
-
3754
-
3755
-
3756
-
3757
-
3758
-
3759
-
3760
-
3761
-
3762
-
3763
-
3764
-
3765
-
3766
-
3767
-
3768
-
3769
-
3770
-
3771
-
3772
-
3773
-
3774
-
3775
-
3776
-
3777
-
3778
-
3779
-
3780
-
3781
-
3782
-
3783
-
3784
-
3785
-
3786
-
3787
-
3788
-
3789
-
3790
-
3791
-
3792
-
3793
-
3794
-
3795
-
3796
-
3797
-
3798
-
3799
-
3800
-
3801
-
3802
-
3803
-
3804
-
3805
-
3806
-
3807
-
3808
-
3809
-
3810
-
3811
-
3812
-
3813
-
3814
-
3815
-
3816
-
3817
-
3818
-
3819
-
3820
-
3821
-
3822
-
3823
-
3824
-
3825
-
3826
-
3827
-
3828
-
3829
-
3830
-
3831
-
3832
-
3833
-
3834
-
3835
-
3836
-
3837
-
3838
-
3839
-
3840
-
3841
-
3842
-
3843
-
3844
-
3845
-
3846
-
3847
-
3848
-
3849
-
3850
-
3851
-
3852
-
3853
-
3854
-
3855
-
3856
-
3857
-
3858
-
3859
-
3860
-
3861
-
3862
-
3863
-
3864
-
3865
-
3866
-
3867
-
3868
-
3869
-
3870
-
3871
-
3872
-
3873
-
3874
-
3875
-
3876
-
3877
-
3878
-
3879
-
3880
-
3881
-
3882
-
3883
-
3884
-
3885
-
3886
-
3887
-
3888
-
3889
-
3890
-
3891
-
3892
-
3893
-
3894
-
3895
-
3896
-
3897
-
3898
-
3899
-
3900
-
3901
-
3902
-
3903
-
3904
-
3905
-
3906
-
3907
-
3908
-
3909
-
3910
-
3911
-
3912
-
3913
-
3914
-
3915
-
3916
-
3917
-
3918
-
3919
-
3920
-
3921
-
3922
-
3923
-
3924
-
3925
-
3926
-
3927
-
3928
-
3929
-
3930
-
3931
-
3932
-
3933
-
3934
-
3935
-
3936
-
3937
-
3938
-
3939
-
3940
-
3941
-
3942
-
3943
-
3944
-
3945
-
3946
-
3947
-
3948
-
3949
-
3950
-
3951
-
3952
-
3953
-
3954
-
3955
-
3956
-
3957
-
3958
-
3959
-
3960
-
3961
-
3962
-
3963
-
3964
-
3965
-
3966
-
3967
-
3968
-
3969
-
3970
-
3971
-
3972
-
3973
-
3974
-
3975
-
3976
-
3977
-
3978
-
3979
-
3980
-
3981
-
3982
-
3983
-
3984
-
3985
-
3986
-
3987
-
3988
-
3989
-
3990
-
3991
-
3992
-
3993
-
3994
-
3995
-
3996
-
3997
-
3998
-
3999
-
4000
-
4001
-
4002
-
4003
-
4004
-
4005
-
4006
-
4007
-
4008
-
4009
-
4010
-
4011
-
4012
-
4013
- ��
4014
-
4015
-
4016
-
4017
-
4018
-
4019
-
4020
-
4021
-
4022
-
4023
-
4024
-
4025
-
4026
-
4027
-
4028
-
4029
-
4030
-
4031
-
4032
-
4033
-
4034
-
4035
-
4036
-
4037
-
4038
-
4039
-
4040
-
4041
-
4042
-
4043
-
4044
-
4045
-
4046
-
4047
-
4048
-
4049
-
4050
-
4051
-
4052
-
4053
-
4054
-
4055
-
4056
-
4057
-
4058
-
4059
-
4060
-
4061
-
4062
-
4063
-
4064
-
4065
-
4066
-
4067
-
4068
-
4069
-
4070
-
4071
-
4072
-
4073
-
4074
-
4075
-
4076
-
4077
-
4078
-
4079
-
4080
-
4081
-
4082
-
4083
-
4084
-
4085
-
4086
-
4087
-
4088
-
4089
-
4090
-
4091
-
4092
-
4093
-
4094
-
4095
-
4096
-
4097
-
4098
-
4099
-
4100
-
4101
-
4102
-
4103
-
4104
-
4105
-
4106
-
4107
-
4108
-
4109
-
4110
-
4111
-
4112
-
4113
-
4114
-
4115
-
4116
-
4117
-
4118
-
4119
-
4120
-
4121
-
4122
-
4123
-
4124
-
4125
-
4126
-
4127
-
4128
-
4129
-
4130
-
4131
-
4132
-
4133
-
4134
-
4135
-
4136
-
4137
-
4138
-
4139
-
4140
-
4141
-
4142
-
4143
-
4144
-
4145
-
4146
-
4147
-
4148
-
4149
-
4150
-
4151
-
4152
-
4153
-
4154
-
4155
-
4156
-
4157
-
4158
-
4159
-
4160
-
4161
-
4162
-
4163
-
4164
-
4165
-
4166
-
4167
-
4168
-
4169
-
4170
-
4171
-
4172
- 稿
4173
-
4174
-
4175
-
4176
-
4177
-
4178
-
4179
-
4180
-
4181
- 穿
4182
-
4183
-
4184
-
4185
-
4186
-
4187
-
4188
-
4189
-
4190
-
4191
-
4192
-
4193
-
4194
-
4195
-
4196
-
4197
-
4198
-
4199
-
4200
-
4201
- 窿
4202
-
4203
-
4204
-
4205
-
4206
-
4207
-
4208
-
4209
-
4210
-
4211
-
4212
-
4213
-
4214
-
4215
-
4216
- 竿
4217
-
4218
-
4219
-
4220
-
4221
-
4222
-
4223
-
4224
-
4225
-
4226
-
4227
-
4228
-
4229
-
4230
-
4231
-
4232
-
4233
-
4234
-
4235
-
4236
-
4237
-
4238
-
4239
-
4240
-
4241
-
4242
-
4243
-
4244
-
4245
-
4246
-
4247
-
4248
-
4249
-
4250
-
4251
-
4252
-
4253
-
4254
-
4255
-
4256
-
4257
-
4258
-
4259
-
4260
-
4261
-
4262
-
4263
-
4264
-
4265
-
4266
-
4267
-
4268
-
4269
-
4270
-
4271
-
4272
-
4273
-
4274
-
4275
-
4276
-
4277
-
4278
-
4279
-
4280
-
4281
-
4282
-
4283
-
4284
-
4285
-
4286
-
4287
- 簿
4288
-
4289
-
4290
-
4291
-
4292
-
4293
-
4294
-
4295
-
4296
-
4297
-
4298
-
4299
-
4300
-
4301
-
4302
-
4303
-
4304
-
4305
-
4306
-
4307
-
4308
-
4309
-
4310
-
4311
-
4312
-
4313
-
4314
-
4315
-
4316
- 粿
4317
-
4318
-
4319
-
4320
-
4321
-
4322
-
4323
-
4324
-
4325
-
4326
-
4327
-
4328
-
4329
-
4330
-
4331
-
4332
-
4333
-
4334
-
4335
-
4336
-
4337
-
4338
-
4339
-
4340
-
4341
-
4342
-
4343
-
4344
-
4345
-
4346
-
4347
-
4348
-
4349
-
4350
-
4351
-
4352
-
4353
-
4354
-
4355
-
4356
-
4357
-
4358
-
4359
-
4360
-
4361
-
4362
-
4363
-
4364
-
4365
-
4366
-
4367
-
4368
-
4369
-
4370
-
4371
-
4372
-
4373
-
4374
-
4375
-
4376
-
4377
- 线
4378
-
4379
-
4380
-
4381
-
4382
-
4383
-
4384
-
4385
-
4386
-
4387
-
4388
-
4389
-
4390
-
4391
-
4392
-
4393
-
4394
-
4395
-
4396
-
4397
-
4398
-
4399
-
4400
-
4401
-
4402
-
4403
-
4404
-
4405
-
4406
-
4407
-
4408
-
4409
-
4410
-
4411
-
4412
-
4413
-
4414
-
4415
-
4416
-
4417
-
4418
-
4419
-
4420
-
4421
-
4422
-
4423
-
4424
-
4425
- 绿
4426
-
4427
-
4428
-
4429
-
4430
-
4431
-
4432
-
4433
-
4434
-
4435
-
4436
-
4437
-
4438
-
4439
-
4440
-
4441
-
4442
-
4443
-
4444
-
4445
-
4446
-
4447
-
4448
-
4449
-
4450
-
4451
-
4452
-
4453
-
4454
-
4455
-
4456
-
4457
-
4458
-
4459
-
4460
-
4461
-
4462
-
4463
-
4464
-
4465
-
4466
-
4467
-
4468
-
4469
-
4470
-
4471
-
4472
-
4473
-
4474
-
4475
-
4476
-
4477
-
4478
-
4479
-
4480
-
4481
-
4482
-
4483
-
4484
-
4485
-
4486
-
4487
-
4488
-
4489
-
4490
- 羿
4491
-
4492
-
4493
-
4494
-
4495
-
4496
-
4497
-
4498
-
4499
-
4500
-
4501
-
4502
-
4503
-
4504
-
4505
-
4506
-
4507
-
4508
- 耀
4509
-
4510
-
4511
-
4512
-
4513
-
4514
-
4515
-
4516
-
4517
-
4518
-
4519
-
4520
-
4521
-
4522
-
4523
-
4524
-
4525
-
4526
-
4527
-
4528
-
4529
-
4530
-
4531
-
4532
-
4533
-
4534
-
4535
-
4536
-
4537
-
4538
-
4539
-
4540
-
4541
-
4542
-
4543
-
4544
-
4545
-
4546
-
4547
-
4548
-
4549
-
4550
-
4551
-
4552
-
4553
-
4554
-
4555
-
4556
-
4557
-
4558
-
4559
-
4560
-
4561
-
4562
-
4563
-
4564
-
4565
-
4566
-
4567
-
4568
-
4569
-
4570
-
4571
-
4572
-
4573
-
4574
-
4575
-
4576
-
4577
-
4578
-
4579
-
4580
-
4581
-
4582
-
4583
-
4584
-
4585
-
4586
-
4587
-
4588
-
4589
-
4590
-
4591
-
4592
-
4593
-
4594
-
4595
-
4596
-
4597
-
4598
-
4599
-
4600
-
4601
-
4602
-
4603
-
4604
-
4605
-
4606
-
4607
-
4608
-
4609
-
4610
-
4611
-
4612
-
4613
-
4614
-
4615
-
4616
-
4617
-
4618
-
4619
-
4620
-
4621
-
4622
-
4623
-
4624
-
4625
-
4626
-
4627
-
4628
-
4629
-
4630
-
4631
-
4632
-
4633
-
4634
-
4635
-
4636
-
4637
-
4638
-
4639
-
4640
-
4641
-
4642
-
4643
-
4644
-
4645
-
4646
-
4647
-
4648
-
4649
-
4650
-
4651
-
4652
-
4653
-
4654
-
4655
-
4656
-
4657
-
4658
-
4659
-
4660
-
4661
-
4662
-
4663
-
4664
-
4665
-
4666
-
4667
-
4668
-
4669
-
4670
-
4671
-
4672
-
4673
-
4674
-
4675
-
4676
-
4677
-
4678
-
4679
-
4680
-
4681
-
4682
-
4683
-
4684
-
4685
-
4686
-
4687
-
4688
-
4689
-
4690
-
4691
-
4692
-
4693
-
4694
-
4695
-
4696
-
4697
-
4698
-
4699
-
4700
-
4701
-
4702
-
4703
-
4704
-
4705
-
4706
-
4707
-
4708
-
4709
-
4710
-
4711
-
4712
-
4713
-
4714
-
4715
-
4716
-
4717
-
4718
-
4719
-
4720
-
4721
-
4722
-
4723
-
4724
-
4725
-
4726
-
4727
-
4728
-
4729
-
4730
-
4731
-
4732
-
4733
-
4734
-
4735
-
4736
-
4737
-
4738
-
4739
-
4740
-
4741
-
4742
-
4743
-
4744
-
4745
-
4746
-
4747
-
4748
-
4749
-
4750
-
4751
-
4752
-
4753
-
4754
-
4755
-
4756
-
4757
-
4758
-
4759
-
4760
-
4761
-
4762
-
4763
-
4764
-
4765
-
4766
-
4767
-
4768
-
4769
-
4770
-
4771
-
4772
-
4773
-
4774
-
4775
-
4776
-
4777
-
4778
-
4779
-
4780
-
4781
-
4782
-
4783
-
4784
-
4785
-
4786
-
4787
-
4788
-
4789
-
4790
-
4791
-
4792
-
4793
-
4794
-
4795
-
4796
-
4797
-
4798
-
4799
-
4800
-
4801
-
4802
-
4803
-
4804
-
4805
-
4806
-
4807
-
4808
-
4809
-
4810
-
4811
-
4812
-
4813
-
4814
-
4815
-
4816
-
4817
-
4818
-
4819
-
4820
-
4821
-
4822
-
4823
-
4824
-
4825
-
4826
-
4827
-
4828
-
4829
-
4830
-
4831
-
4832
-
4833
-
4834
-
4835
-
4836
-
4837
-
4838
-
4839
-
4840
-
4841
-
4842
-
4843
-
4844
-
4845
-
4846
-
4847
-
4848
-
4849
-
4850
-
4851
-
4852
-
4853
-
4854
-
4855
-
4856
-
4857
-
4858
-
4859
-
4860
-
4861
-
4862
-
4863
-
4864
-
4865
-
4866
-
4867
-
4868
-
4869
-
4870
-
4871
-
4872
-
4873
-
4874
-
4875
-
4876
-
4877
-
4878
-
4879
-
4880
-
4881
-
4882
-
4883
-
4884
-
4885
-
4886
-
4887
-
4888
-
4889
-
4890
-
4891
-
4892
-
4893
-
4894
-
4895
-
4896
-
4897
-
4898
-
4899
-
4900
-
4901
-
4902
-
4903
-
4904
-
4905
-
4906
-
4907
-
4908
-
4909
-
4910
-
4911
-
4912
-
4913
-
4914
-
4915
-
4916
-
4917
-
4918
-
4919
-
4920
-
4921
-
4922
-
4923
-
4924
-
4925
-
4926
-
4927
-
4928
-
4929
-
4930
-
4931
-
4932
-
4933
-
4934
-
4935
-
4936
-
4937
-
4938
-
4939
-
4940
-
4941
-
4942
-
4943
-
4944
-
4945
-
4946
-
4947
-
4948
-
4949
-
4950
-
4951
-
4952
-
4953
-
4954
-
4955
-
4956
-
4957
-
4958
-
4959
-
4960
-
4961
-
4962
-
4963
-
4964
-
4965
-
4966
-
4967
-
4968
-
4969
-
4970
-
4971
-
4972
-
4973
-
4974
-
4975
-
4976
-
4977
-
4978
-
4979
-
4980
-
4981
-
4982
-
4983
-
4984
-
4985
-
4986
-
4987
-
4988
-
4989
-
4990
-
4991
-
4992
-
4993
-
4994
-
4995
-
4996
-
4997
-
4998
-
4999
-
5000
-
5001
-
5002
-
5003
-
5004
-
5005
-
5006
-
5007
-
5008
-
5009
-
5010
-
5011
-
5012
-
5013
-
5014
-
5015
-
5016
-
5017
-
5018
-
5019
-
5020
-
5021
-
5022
-
5023
-
5024
-
5025
-
5026
-
5027
-
5028
-
5029
-
5030
-
5031
-
5032
-
5033
-
5034
-
5035
-
5036
-
5037
- ��
5038
-
5039
-
5040
-
5041
-
5042
-
5043
-
5044
-
5045
-
5046
-
5047
-
5048
-
5049
-
5050
-
5051
-
5052
-
5053
-
5054
-
5055
-
5056
-
5057
-
5058
-
5059
-
5060
-
5061
-
5062
-
5063
-
5064
-
5065
-
5066
-
5067
-
5068
-
5069
-
5070
-
5071
-
5072
-
5073
-
5074
-
5075
-
5076
-
5077
-
5078
-
5079
-
5080
-
5081
-
5082
-
5083
-
5084
-
5085
-
5086
-
5087
-
5088
-
5089
-
5090
-
5091
-
5092
-
5093
-
5094
-
5095
-
5096
-
5097
-
5098
-
5099
-
5100
-
5101
-
5102
-
5103
-
5104
-
5105
-
5106
-
5107
-
5108
-
5109
-
5110
-
5111
-
5112
-
5113
-
5114
-
5115
-
5116
-
5117
-
5118
-
5119
-
5120
-
5121
-
5122
-
5123
-
5124
-
5125
-
5126
-
5127
-
5128
-
5129
-
5130
-
5131
-
5132
-
5133
-
5134
-
5135
-
5136
-
5137
-
5138
-
5139
-
5140
-
5141
-
5142
-
5143
- 西
5144
-
5145
-
5146
-
5147
-
5148
-
5149
-
5150
-
5151
-
5152
-
5153
-
5154
-
5155
-
5156
-
5157
-
5158
-
5159
-
5160
-
5161
-
5162
-
5163
-
5164
-
5165
-
5166
-
5167
-
5168
-
5169
-
5170
-
5171
-
5172
-
5173
-
5174
-
5175
-
5176
-
5177
-
5178
-
5179
-
5180
-
5181
-
5182
-
5183
-
5184
-
5185
-
5186
-
5187
-
5188
-
5189
-
5190
-
5191
-
5192
-
5193
-
5194
-
5195
-
5196
-
5197
-
5198
-
5199
-
5200
-
5201
-
5202
-
5203
-
5204
- 访
5205
-
5206
-
5207
-
5208
-
5209
-
5210
-
5211
-
5212
-
5213
-
5214
-
5215
-
5216
-
5217
-
5218
-
5219
-
5220
-
5221
-
5222
-
5223
-
5224
-
5225
-
5226
-
5227
-
5228
-
5229
-
5230
-
5231
-
5232
-
5233
-
5234
-
5235
-
5236
-
5237
-
5238
-
5239
-
5240
-
5241
-
5242
-
5243
-
5244
-
5245
-
5246
-
5247
-
5248
-
5249
-
5250
-
5251
-
5252
- 诿
5253
-
5254
-
5255
-
5256
-
5257
-
5258
-
5259
-
5260
-
5261
-
5262
-
5263
-
5264
-
5265
-
5266
-
5267
-
5268
-
5269
-
5270
-
5271
-
5272
-
5273
-
5274
-
5275
-
5276
-
5277
-
5278
-
5279
-
5280
-
5281
-
5282
-
5283
-
5284
-
5285
-
5286
-
5287
-
5288
-
5289
-
5290
-
5291
-
5292
-
5293
-
5294
-
5295
-
5296
-
5297
-
5298
-
5299
-
5300
-
5301
-
5302
-
5303
-
5304
-
5305
-
5306
-
5307
-
5308
-
5309
-
5310
-
5311
-
5312
-
5313
-
5314
-
5315
-
5316
-
5317
-
5318
-
5319
-
5320
-
5321
-
5322
-
5323
-
5324
-
5325
-
5326
-
5327
-
5328
-
5329
-
5330
-
5331
-
5332
-
5333
-
5334
-
5335
-
5336
-
5337
-
5338
-
5339
-
5340
-
5341
-
5342
-
5343
-
5344
-
5345
- 贿
5346
-
5347
-
5348
-
5349
-
5350
-
5351
-
5352
-
5353
-
5354
-
5355
-
5356
-
5357
-
5358
-
5359
-
5360
-
5361
-
5362
-
5363
-
5364
-
5365
-
5366
-
5367
-
5368
-
5369
-
5370
-
5371
-
5372
-
5373
-
5374
-
5375
-
5376
-
5377
-
5378
-
5379
-
5380
-
5381
-
5382
-
5383
-
5384
-
5385
-
5386
-
5387
-
5388
-
5389
-
5390
-
5391
-
5392
-
5393
-
5394
-
5395
-
5396
-
5397
-
5398
-
5399
-
5400
-
5401
-
5402
-
5403
-
5404
-
5405
-
5406
-
5407
-
5408
-
5409
-
5410
-
5411
-
5412
-
5413
-
5414
-
5415
-
5416
-
5417
-
5418
-
5419
-
5420
-
5421
-
5422
-
5423
-
5424
-
5425
-
5426
-
5427
-
5428
-
5429
-
5430
-
5431
-
5432
-
5433
-
5434
-
5435
-
5436
-
5437
-
5438
-
5439
-
5440
-
5441
-
5442
-
5443
-
5444
-
5445
-
5446
-
5447
-
5448
-
5449
- 蹿
5450
-
5451
-
5452
-
5453
-
5454
-
5455
-
5456
-
5457
-
5458
-
5459
-
5460
-
5461
-
5462
-
5463
-
5464
-
5465
-
5466
-
5467
-
5468
-
5469
-
5470
-
5471
-
5472
-
5473
-
5474
-
5475
- 轿
5476
-
5477
-
5478
-
5479
-
5480
-
5481
-
5482
-
5483
-
5484
-
5485
-
5486
-
5487
-
5488
-
5489
-
5490
-
5491
-
5492
-
5493
-
5494
-
5495
-
5496
-
5497
-
5498
-
5499
-
5500
-
5501
-
5502
-
5503
-
5504
-
5505
-
5506
-
5507
-
5508
-
5509
-
5510
-
5511
-
5512
-
5513
-
5514
-
5515
-
5516
-
5517
-
5518
-
5519
-
5520
-
5521
-
5522
-
5523
-
5524
-
5525
-
5526
-
5527
-
5528
-
5529
-
5530
-
5531
-
5532
-
5533
-
5534
-
5535
-
5536
-
5537
-
5538
-
5539
-
5540
- 退
5541
-
5542
-
5543
-
5544
-
5545
-
5546
-
5547
-
5548
-
5549
-
5550
-
5551
-
5552
-
5553
-
5554
-
5555
-
5556
-
5557
-
5558
-
5559
-
5560
-
5561
-
5562
-
5563
-
5564
-
5565
-
5566
-
5567
-
5568
-
5569
-
5570
-
5571
-
5572
-
5573
-
5574
-
5575
-
5576
-
5577
-
5578
-
5579
-
5580
-
5581
-
5582
-
5583
-
5584
-
5585
-
5586
-
5587
-
5588
-
5589
-
5590
-
5591
-
5592
-
5593
-
5594
-
5595
-
5596
-
5597
-
5598
-
5599
-
5600
-
5601
-
5602
-
5603
-
5604
-
5605
-
5606
-
5607
-
5608
-
5609
-
5610
-
5611
-
5612
-
5613
-
5614
-
5615
-
5616
-
5617
-
5618
-
5619
-
5620
-
5621
-
5622
-
5623
-
5624
-
5625
-
5626
-
5627
-
5628
-
5629
-
5630
-
5631
-
5632
-
5633
-
5634
-
5635
-
5636
-
5637
-
5638
-
5639
-
5640
-
5641
-
5642
-
5643
-
5644
-
5645
-
5646
-
5647
-
5648
-
5649
-
5650
-
5651
-
5652
-
5653
-
5654
-
5655
-
5656
-
5657
-
5658
-
5659
-
5660
-
5661
-
5662
-
5663
-
5664
-
5665
-
5666
-
5667
-
5668
-
5669
-
5670
-
5671
-
5672
-
5673
-
5674
-
5675
-
5676
-
5677
-
5678
-
5679
-
5680
-
5681
-
5682
-
5683
-
5684
-
5685
-
5686
-
5687
-
5688
-
5689
-
5690
-
5691
-
5692
-
5693
-
5694
-
5695
-
5696
-
5697
-
5698
-
5699
-
5700
-
5701
-
5702
-
5703
-
5704
-
5705
-
5706
-
5707
-
5708
-
5709
-
5710
-
5711
-
5712
-
5713
-
5714
-
5715
-
5716
-
5717
-
5718
-
5719
-
5720
-
5721
-
5722
-
5723
-
5724
-
5725
-
5726
-
5727
-
5728
-
5729
-
5730
-
5731
-
5732
-
5733
-
5734
-
5735
-
5736
-
5737
-
5738
-
5739
-
5740
-
5741
-
5742
-
5743
-
5744
-
5745
-
5746
-
5747
-
5748
-
5749
-
5750
-
5751
-
5752
-
5753
-
5754
-
5755
-
5756
-
5757
-
5758
-
5759
-
5760
-
5761
-
5762
-
5763
-
5764
-
5765
-
5766
-
5767
-
5768
-
5769
-
5770
-
5771
-
5772
-
5773
-
5774
-
5775
-
5776
-
5777
-
5778
-
5779
-
5780
-
5781
-
5782
-
5783
-
5784
-
5785
-
5786
-
5787
-
5788
-
5789
-
5790
-
5791
-
5792
-
5793
-
5794
-
5795
-
5796
-
5797
-
5798
-
5799
-
5800
-
5801
-
5802
-
5803
-
5804
-
5805
-
5806
-
5807
-
5808
-
5809
-
5810
-
5811
-
5812
-
5813
-
5814
-
5815
-
5816
-
5817
-
5818
-
5819
-
5820
-
5821
-
5822
-
5823
-
5824
-
5825
-
5826
-
5827
-
5828
-
5829
-
5830
-
5831
-
5832
-
5833
-
5834
-
5835
-
5836
-
5837
-
5838
-
5839
-
5840
-
5841
-
5842
-
5843
-
5844
-
5845
-
5846
-
5847
-
5848
-
5849
-
5850
-
5851
-
5852
-
5853
-
5854
-
5855
-
5856
-
5857
-
5858
-
5859
-
5860
-
5861
-
5862
-
5863
-
5864
-
5865
-
5866
-
5867
-
5868
-
5869
-
5870
-
5871
-
5872
-
5873
-
5874
-
5875
-
5876
-
5877
-
5878
-
5879
-
5880
-
5881
-
5882
-
5883
-
5884
-
5885
-
5886
-
5887
-
5888
-
5889
-
5890
-
5891
-
5892
-
5893
-
5894
-
5895
-
5896
-
5897
-
5898
-
5899
-
5900
-
5901
-
5902
-
5903
-
5904
-
5905
-
5906
-
5907
-
5908
-
5909
-
5910
-
5911
-
5912
-
5913
-
5914
-
5915
-
5916
-
5917
-
5918
-
5919
-
5920
-
5921
-
5922
-
5923
-
5924
-
5925
-
5926
-
5927
-
5928
-
5929
-
5930
-
5931
-
5932
-
5933
-
5934
-
5935
-
5936
-
5937
-
5938
-
5939
-
5940
-
5941
-
5942
-
5943
-
5944
-
5945
-
5946
-
5947
-
5948
-
5949
-
5950
-
5951
-
5952
-
5953
-
5954
-
5955
-
5956
-
5957
-
5958
-
5959
-
5960
-
5961
-
5962
-
5963
-
5964
-
5965
-
5966
-
5967
-
5968
-
5969
-
5970
-
5971
-
5972
-
5973
-
5974
-
5975
-
5976
-
5977
-
5978
-
5979
-
5980
-
5981
-
5982
-
5983
-
5984
-
5985
-
5986
-
5987
-
5988
-
5989
-
5990
-
5991
-
5992
-
5993
-
5994
-
5995
-
5996
-
5997
-
5998
-
5999
-
6000
-
6001
-
6002
-
6003
-
6004
-
6005
-
6006
-
6007
-
6008
-
6009
-
6010
-
6011
-
6012
-
6013
-
6014
-
6015
-
6016
-
6017
-
6018
-
6019
-
6020
-
6021
-
6022
-
6023
-
6024
-
6025
-
6026
-
6027
-
6028
-
6029
-
6030
-
6031
-
6032
-
6033
-
6034
-
6035
-
6036
-
6037
-
6038
-
6039
-
6040
-
6041
-
6042
-
6043
-
6044
-
6045
-
6046
-
6047
-
6048
-
6049
-
6050
-
6051
-
6052
-
6053
-
6054
-
6055
-
6056
-
6057
-
6058
-
6059
-
6060
-
6061
- ��
6062
-
6063
-
6064
-
6065
- 饿
6066
-
6067
-
6068
-
6069
-
6070
-
6071
-
6072
-
6073
-
6074
-
6075
-
6076
-
6077
-
6078
-
6079
-
6080
-
6081
-
6082
-
6083
-
6084
-
6085
-
6086
-
6087
-
6088
-
6089
-
6090
-
6091
-
6092
-
6093
-
6094
-
6095
-
6096
-
6097
-
6098
-
6099
-
6100
-
6101
-
6102
-
6103
- 驿
6104
-
6105
-
6106
-
6107
-
6108
-
6109
-
6110
-
6111
-
6112
-
6113
-
6114
-
6115
-
6116
-
6117
-
6118
-
6119
-
6120
-
6121
-
6122
-
6123
-
6124
-
6125
-
6126
-
6127
-
6128
-
6129
-
6130
-
6131
-
6132
-
6133
-
6134
-
6135
-
6136
-
6137
-
6138
-
6139
-
6140
-
6141
-
6142
-
6143
-
6144
-
6145
-
6146
-
6147
-
6148
-
6149
-
6150
-
6151
-
6152
-
6153
-
6154
-
6155
-
6156
-
6157
- 鱿
6158
-
6159
-
6160
-
6161
-
6162
-
6163
-
6164
-
6165
-
6166
-
6167
-
6168
-
6169
-
6170
-
6171
-
6172
-
6173
-
6174
-
6175
-
6176
-
6177
-
6178
-
6179
-
6180
-
6181
-
6182
-
6183
-
6184
-
6185
-
6186
-
6187
-
6188
-
6189
-
6190
-
6191
-
6192
-
6193
-
6194
-
6195
-
6196
-
6197
-
6198
-
6199
-
6200
- 鸿
6201
-
6202
-
6203
-
6204
-
6205
-
6206
-
6207
-
6208
-
6209
-
6210
-
6211
-
6212
-
6213
-
6214
-
6215
-
6216
-
6217
-
6218
-
6219
-
6220
-
6221
-
6222
- 鹿
6223
-
6224
-
6225
-
6226
-
6227
-
6228
-
6229
-
6230
-
6231
-
6232
-
6233
-
6234
-
6235
-
6236
-
6237
-
6238
-
6239
-
6240
-
6241
-
6242
-
6243
-
6244
-
6245
-
6246
-
6247
-
6248
-
6249
-
6250
-
6251
-
6252
-
6253
-
6254
-
6255
-
6256
-
6257
-
6258
-
6259
-
6260
- 齿
6261
-
6262
-
6263
-
6264
-
6265
-
6266
-
6267
-
6268
-
6269
-
6270
-
6271
-
6272
-
6273
-
6274
-
6275
-
6276
-
6277
-
6278
-
6279
-
6280
-
6281
-
6282
-
6283
-
6284
-
6285
-
6286
-
6287
-
6288
-
6289
-
6290
-
6291
-
6292
-
6293
-
6294
-
6295
-
6296
-
6297
-
6298
-
6299
-
6300
-
6301
-
6302
-
6303
-
6304
-
6305
-
6306
-
6307
-
6308
-
6309
-
6310
-
6311
-
6312
-
6313
-
6314
-
6315
-
6316
-
6317
-
6318
-
6319
-
6320
-
6321
-
6322
-
6323
-
6324
-
6325
-
6326
-
6327
-
6328
-
6329
-
6330
-
6331
-
6332
-
6333
-
6334
-
6335
-
6336
-
6337
-
6338
-
6339
-
6340
-
6341
-
6342
-
6343
-
6344
-
6345
-
6346
-
6347
-
6348
-
6349
-
6350
-
6351
-
6352
- ︿
6353
-
6354
-
6355
-
6356
-
6357
-
6358
-
6359
-
6360
-
6361
-
6362
-
6363
-
6364
-
6365
-
6366
-
6367
-
6368
-
6369
-
6370
-
6371
-
6372
-
6373
-
6374
-
6375
-
6376
-
6377
-
6378
-
6379
-
6380
-
6381
-
6382
-
6383
-
6384
-
6385
-
6386
-
6387
-
6388
-
6389
-
6390
- ...
6391
- yam
6392
- lofter
6393
- ##s
6394
- by
6395
- ##0
6396
- com
6397
- ##a
6398
- ##2
6399
- ##1
6400
- ##3
6401
- ##e
6402
- ##8
6403
- ##5
6404
- ##6
6405
- ##4
6406
- ##9
6407
- ##7
6408
- ##t
6409
- ##o
6410
- ##d
6411
- ##i
6412
- ##n
6413
- app
6414
- www
6415
- the
6416
- ##m
6417
- ##c
6418
- ##l
6419
- ##y
6420
- ##r
6421
- ##g
6422
- http
6423
- qq
6424
- ##p
6425
- ##f
6426
- google
6427
- pixnet
6428
- cookies
6429
- tripadvisor
6430
- ##er
6431
- ##k
6432
- ##h
6433
- facebook
6434
- ##b
6435
- of
6436
- ##x
6437
- ##u
6438
- iphone
6439
- ip
6440
- in
6441
- ##w
6442
- ##ing
6443
- ctrip
6444
- ##on
6445
- ##v
6446
- to
6447
- id
6448
- it
6449
- windows
6450
- llc
6451
- top
6452
- led
6453
- at
6454
- ##an
6455
- ##z
6456
- android
6457
- and
6458
- vr
6459
- blogthis
6460
- twitter
6461
- ##le
6462
- ok
6463
- cn
6464
- no
6465
- ios
6466
- ##in
6467
- ##mm
6468
- on
6469
- te
6470
- ig
6471
- lv
6472
- ##ng
6473
- ##us
6474
- pc
6475
- ──
6476
- ##te
6477
- ##ed
6478
- html
6479
- ncc
6480
- wifi
6481
- email
6482
- blog
6483
- is
6484
- mail
6485
- online
6486
- ##al
6487
- dvd
6488
- ##ic
6489
- studio
6490
- ##℃
6491
- ##ia
6492
- line
6493
- vip
6494
- ##q
6495
- ##ce
6496
- ##en
6497
- for
6498
- ##is
6499
- ##ra
6500
- ##es
6501
- ##j
6502
- usb
6503
- net
6504
- cp
6505
- asia
6506
- ##cm
6507
- diy
6508
- new
6509
- ta
6510
- language
6511
- vs
6512
- apple
6513
- tw
6514
- web
6515
- ##ne
6516
- ipad
6517
- you
6518
- ##re
6519
- ##tion
6520
- ps
6521
- de
6522
- bt
6523
- pony
6524
- atm
6525
- ##ch
6526
- ceo
6527
- ##or
6528
- go
6529
- ##na
6530
- av
6531
- pro
6532
- cafe
6533
- pinterest
6534
- pixstyleme3c
6535
- ##ta
6536
- more
6537
- said
6538
- mp3
6539
- ##ll
6540
- nba
6541
- jun
6542
- tv
6543
- pm
6544
- nbsp
6545
- ##ie
6546
- linux
6547
- ##ma
6548
- cd
6549
- hd
6550
- ##ion
6551
- am
6552
- ##th
6553
- ##st
6554
- ##se
6555
- ##et
6556
- gdp
6557
- my
6558
- abc
6559
- flash
6560
- one
6561
- ##ck
6562
- gps
6563
- ##ly
6564
- web885
6565
- ##ge
6566
- xd
6567
- boss
6568
- isbn
6569
- org
6570
- ##ry
6571
- me
6572
- love
6573
- ##ter
6574
- ##ar
6575
- ##la
6576
- hotel
6577
- pk
6578
- ie
6579
- ##os
6580
- ##el
6581
- seo
6582
- cpu
6583
- ##ml
6584
- p2p
6585
- may
6586
- sun
6587
- tue
6588
- internet
6589
- cc
6590
- posted
6591
- youtube
6592
- ##at
6593
- ##man
6594
- ii
6595
- abs
6596
- nt
6597
- pdf
6598
- yahoo
6599
- ago
6600
- ##it
6601
- news
6602
- mac
6603
- ##me
6604
- java
6605
- spa
6606
- ##de
6607
- ##nt
6608
- hk
6609
- all
6610
- plus
6611
- la
6612
- ##mb
6613
- ##ve
6614
- west
6615
- ##da
6616
- air
6617
- ##ps
6618
- ##to
6619
- logo
6620
- htc
6621
- php
6622
- https
6623
- fi
6624
- momo
6625
- ##son
6626
- sat
6627
- ##ke
6628
- ebd
6629
- suv
6630
- wi
6631
- day
6632
- apk
6633
- ##um
6634
- mv
6635
- galaxy
6636
- wiki
6637
- or
6638
- brake
6639
- this
6640
- mon
6641
- po
6642
- javascript
6643
- life
6644
- home
6645
- june
6646
- ##ss
6647
- system
6648
- pp
6649
- world
6650
- fb
6651
- br
6652
- ##as
6653
- ic
6654
- ai
6655
- leonardo
6656
- safari
6657
- live
6658
- free
6659
- xx
6660
- wed
6661
- win7
6662
- kiehl
6663
- ##co
6664
- lg
6665
- o2o
6666
- ##go
6667
- us
6668
- mm
6669
- vfm
6670
- kanye
6671
- ##id
6672
- jr
6673
- ##ey
6674
- rss
6675
- ##sa
6676
- ##ro
6677
- ##am
6678
- ##no
6679
- thu
6680
- fri
6681
- ##sh
6682
- ##ki
6683
- comments
6684
- name
6685
- ##pe
6686
- ##ine
6687
- max
6688
- uber
6689
- ##mi
6690
- ##ton
6691
- wordpress
6692
- office
6693
- ##ment
6694
- bd
6695
- win10
6696
- ##ld
6697
- ##li
6698
- gmail
6699
- bb
6700
- dior
6701
- ##rs
6702
- ##ri
6703
- ##rd
6704
- up
6705
- cad
6706
- dr
6707
- read
6708
- ##io
6709
- url
6710
- pvc
6711
- paypal
6712
- show
6713
- policy
6714
- ##ty
6715
- with
6716
- txt
6717
- ##ba
6718
- dna
6719
- from
6720
- post
6721
- mini
6722
- ar
6723
- taiwan
6724
- john
6725
- ##ga
6726
- privacy
6727
- agoda
6728
- ##ny
6729
- word
6730
- ##by
6731
- ##ur
6732
- ##hz
6733
- ##ang
6734
- cookie
6735
- netscape
6736
- ##ka
6737
- ##~
6738
- ##ad
6739
- house
6740
- share
6741
- note
6742
- ibm
6743
- code
6744
- hello
6745
- nike
6746
- sim
6747
- survey
6748
- wikia
6749
- cbc
6750
- ##tor
6751
- ##kg
6752
- ##rt
6753
- campaign
6754
- store
6755
- os
6756
- ##ct
6757
- ##ts
6758
- ##°
6759
- api
6760
- ##ns
6761
- excel
6762
- ##ao
6763
- ##nd
6764
- university
6765
- ##ya
6766
- ##il
6767
- pierre
6768
- ipo
6769
- hotels
6770
- ##ian
6771
- years
6772
- ##ers
6773
- high
6774
- ##day
6775
- time
6776
- ##ay
6777
- bug
6778
- ##line
6779
- ##be
6780
- xp
6781
- talk2yam
6782
- yamservice
6783
- coco
6784
- ##dy
6785
- sony
6786
- ##ies
6787
- microsoft
6788
- david
6789
- people
6790
- ##ha
6791
- instagram
6792
- intel
6793
- ##ot
6794
- iso
6795
- ##va
6796
- ##mo
6797
- ##land
6798
- xxx
6799
- man
6800
- co
6801
- ltxsw
6802
- ##ation
6803
- baby
6804
- ##pa
6805
- ##ol
6806
- tag
6807
- ##ue
6808
- msn
6809
- oppo
6810
- ##ca
6811
- control
6812
- ##om
6813
- st
6814
- chrome
6815
- ##ure
6816
- be
6817
- lol
6818
- ##bo
6819
- lady
6820
- ##way
6821
- ##ko
6822
- ##do
6823
- ##un
6824
- corporation
6825
- ##ni
6826
- herme
6827
- ##up
6828
- ui
6829
- ##ds
6830
- ppt
6831
- admin
6832
- three
6833
- bbc
6834
- re
6835
- ca
6836
- hp
6837
- ##ee
6838
- tpp
6839
- ##ive
6840
- root
6841
- ##cc
6842
- ##ble
6843
- ##ity
6844
- adobe
6845
- park
6846
- et
6847
- oled
6848
- city
6849
- ##ex
6850
- ##ler
6851
- ##ap
6852
- china
6853
- ##book
6854
- view
6855
- ##ice
6856
- global
6857
- ##km
6858
- your
6859
- hong
6860
- ##mg
6861
- out
6862
- ##ms
6863
- ng
6864
- ebay
6865
- menu
6866
- ubuntu
6867
- ##cy
6868
- rom
6869
- ##view
6870
- open
6871
- ktv
6872
- do
6873
- server
6874
- ##lo
6875
- if
6876
- english
6877
- ##oo
6878
- step1
6879
- kong
6880
- club
6881
- july
6882
- inc
6883
- mr
6884
- hi
6885
- ##net
6886
- touch
6887
- ##ls
6888
- ##ii
6889
- michael
6890
- lcd
6891
- phone
6892
- james
6893
- step2
6894
- ios9
6895
- ##box
6896
- dc
6897
- ##ley
6898
- samsung
6899
- pokemon
6900
- css
6901
- ##ent
6902
- ##les
6903
- s8
6904
- atom
6905
- play
6906
- bmw
6907
- ##said
6908
- sa
6909
- etf
6910
- ctrl
6911
- adidas
6912
- amazon
6913
- ##ber
6914
- ##ner
6915
- visa
6916
- ##der
6917
- connectivity
6918
- ##hi
6919
- firefox
6920
- hr
6921
- so
6922
- style
6923
- mark
6924
- pop
6925
- ol
6926
- skip
6927
- as
6928
- ##ir
6929
- mba
6930
- ##ai
6931
- le
6932
- ##ver
6933
- cafe2017
6934
- lte
6935
- super
6936
- ##ron
6937
- amd
6938
- like
6939
- are
6940
- ##ster
6941
- we
6942
- ##sk
6943
- paul
6944
- data
6945
- international
6946
- ##ft
6947
- longchamp
6948
- ssd
6949
- good
6950
- ##ti
6951
- reply
6952
- ##my
6953
- apr
6954
- star
6955
- ##ker
6956
- source
6957
- js
6958
- get
6959
- force
6960
- photo
6961
- ##one
6962
- ##ow
6963
- link
6964
- bbs
6965
- goods
6966
- ##lin
6967
- python
6968
- ##ip
6969
- game
6970
- ##ics
6971
- blue
6972
- page
6973
- itunes
6974
- gt
6975
- gif
6976
- ##ff
6977
- group
6978
- about
6979
- bar
6980
- ganji
6981
- ##nce
6982
- music
6983
- lee
6984
- not
6985
- ##per
6986
- an
6987
- faq
6988
- comment
6989
- days
6990
- ##ock
6991
- ##bs
6992
- v1
6993
- player
6994
- xbox
6995
- sql
6996
- fm
6997
- f1
6998
- ##ah
6999
- ##lv
7000
- ##mp
7001
- melody
7002
- xml
7003
- market
7004
- ##au
7005
- what
7006
- gl
7007
- ##age
7008
- tips
7009
- book
7010
- ##ting
7011
- mysql
7012
- can
7013
- ##ung
7014
- wonderland
7015
- watch
7016
- ##ction
7017
- mar
7018
- mobile
7019
- article
7020
- ##db
7021
- part
7022
- party
7023
- ##ore
7024
- ##op
7025
- dj
7026
- main
7027
- ##ong
7028
- art
7029
- ad
7030
- pm2
7031
- japan
7032
- ts
7033
- ##ica
7034
- der
7035
- sm
7036
- ##wa
7037
- ct
7038
- homemesh
7039
- search
7040
- ##tv
7041
- ##di
7042
- macbook
7043
- service
7044
- type
7045
- ##ier
7046
- ##si
7047
- ##ok
7048
- best
7049
- goris
7050
- lock
7051
- cf
7052
- big
7053
- ##ut
7054
- ftp
7055
- carol
7056
- ##vi
7057
- happy
7058
- sd
7059
- ##ac
7060
- anti
7061
- pe
7062
- cnn
7063
- iii
7064
- esp
7065
- jan
7066
- tags
7067
- august
7068
- vol
7069
- ##fs
7070
- ##sion
7071
- design
7072
- ac
7073
- press
7074
- jordan
7075
- ppp
7076
- that
7077
- key
7078
- check
7079
- ##tt
7080
- ##㎡
7081
- ##lt
7082
- power
7083
- ##bc
7084
- vivi
7085
- he
7086
- jpg
7087
- ##rry
7088
- nb
7089
- ##ted
7090
- ##rn
7091
- usd
7092
- ##t00
7093
- master
7094
- model
7095
- al
7096
- ram
7097
- goo
7098
- ##ui
7099
- red
7100
- ##ary
7101
- rpg
7102
- item
7103
- ##pm
7104
- ##za
7105
- project
7106
- hot
7107
- td
7108
- blogabstract
7109
- ##ger
7110
- gr2
7111
- black
7112
- electronic
7113
- nfc
7114
- year
7115
- asus
7116
- html5
7117
- cindy
7118
- ##hd
7119
- m3
7120
- esc
7121
- ##od
7122
- booking
7123
- fed
7124
- tvb
7125
- ##ina
7126
- mit
7127
- chan
7128
- distribution
7129
- next
7130
- peter
7131
- bios
7132
- steam
7133
- cm
7134
- pk10
7135
- ##ix
7136
- dec
7137
- nasa
7138
- ##ana
7139
- icecat
7140
- b1
7141
- will
7142
- li
7143
- se
7144
- ##ji
7145
- ##ard
7146
- oct
7147
- ##ain
7148
- jp
7149
- ##ze
7150
- ##bi
7151
- cio
7152
- smart
7153
- h5
7154
- ##port
7155
- curve
7156
- vpn
7157
- ##nm
7158
- ##dia
7159
- utc
7160
- rmvb
7161
- chanel
7162
- a4
7163
- miss
7164
- ##and
7165
- ##im
7166
- media
7167
- who
7168
- she
7169
- girl
7170
- vera
7171
- class
7172
- vivo
7173
- king
7174
- ##ei
7175
- national
7176
- ab
7177
- ipod
7178
- ap
7179
- ms
7180
- mp4
7181
- msci
7182
- ##po
7183
- mg
7184
- index
7185
- ##bit
7186
- ##out
7187
- ##zz
7188
- apec
7189
- photoshop
7190
- opec
7191
- ##tes
7192
- ##ast
7193
- ○○
7194
- ##ling
7195
- ##ory
7196
- ##ical
7197
- kitty
7198
- content
7199
- step3
7200
- ##cn
7201
- win8
7202
- vc
7203
- iphone7
7204
- robert
7205
- tcl
7206
- beauty
7207
- en
7208
- dollars
7209
- ##ys
7210
- ##oc
7211
- step
7212
- pay
7213
- yy
7214
- a1
7215
- ##lly
7216
- ##ks
7217
- download
7218
- sep
7219
- exe
7220
- ph
7221
- school
7222
- gb
7223
- center
7224
- pr
7225
- street
7226
- ##board
7227
- uv
7228
- ##lan
7229
- winrar
7230
- ##que
7231
- ##ua
7232
- ##com
7233
- gpu
7234
- ettoday
7235
- fu
7236
- tom
7237
- ##ren
7238
- ##via
7239
- b2b
7240
- ##tch
7241
- rose
7242
- arm
7243
- mb
7244
- ##ial
7245
- ##nn
7246
- nvidia
7247
- step4
7248
- mvp
7249
- york
7250
- how
7251
- cpi
7252
- gov
7253
- kg
7254
- joe
7255
- ##xx
7256
- mandy
7257
- pa
7258
- ##ser
7259
- copyright
7260
- fashion
7261
- don
7262
- ecu
7263
- ##ist
7264
- ##art
7265
- erp
7266
- wap
7267
- have
7268
- ##lm
7269
- talk
7270
- ##ek
7271
- ##ning
7272
- ##if
7273
- ch
7274
- ##ite
7275
- video
7276
- cs
7277
- san
7278
- iot
7279
- look
7280
- ##ku
7281
- october
7282
- ##ux
7283
- trump
7284
- ##hs
7285
- ##ide
7286
- box
7287
- first
7288
- ##ins
7289
- april
7290
- ##ight
7291
- angel
7292
- protected
7293
- aa
7294
- x1
7295
- m2
7296
- ##fe
7297
- ##×
7298
- ##ho
7299
- size
7300
- min
7301
- ofo
7302
- fun
7303
- gomaji
7304
- ex
7305
- hdmi
7306
- food
7307
- dns
7308
- march
7309
- chris
7310
- kevin
7311
- ##lla
7312
- ##pp
7313
- ##ec
7314
- ag
7315
- ems
7316
- ##rm
7317
- ##ham
7318
- off
7319
- asp
7320
- team
7321
- fandom
7322
- ed
7323
- ##ell
7324
- info
7325
- sina
7326
- ##able
7327
- ##ctor
7328
- dll
7329
- rights
7330
- ltd
7331
- idc
7332
- jul
7333
- ma
7334
- surface
7335
- mall
7336
- eps
7337
- green
7338
- map
7339
- space
7340
- donald
7341
- v2
7342
- sodu
7343
- ##light
7344
- reserved
7345
- htm
7346
- ##han
7347
- mod
7348
- ##ise
7349
- ##tions
7350
- ti
7351
- ##shi
7352
- doc
7353
- icp
7354
- wang
7355
- ##ram
7356
- shopping
7357
- aug
7358
- ##pi
7359
- ##well
7360
- now
7361
- wam
7362
- b2
7363
- ##hu
7364
- ##gb
7365
- f2
7366
- mix
7367
- ##ef
7368
- ##uan
7369
- bwl
7370
- ##plus
7371
- ##res
7372
- core
7373
- ##ess
7374
- tea
7375
- hktvmall
7376
- nhk
7377
- ##ate
7378
- list
7379
- ##ese
7380
- feb
7381
- inn
7382
- nov
7383
- daniel
7384
- ##ci
7385
- pass
7386
- ##bet
7387
- ##nk
7388
- coffee
7389
- ssl
7390
- airbnb
7391
- ##ute
7392
- fbi
7393
- woshipm
7394
- skype
7395
- ea
7396
- cg
7397
- sp
7398
- ##fc
7399
- ##www
7400
- yes
7401
- edge
7402
- alt
7403
- fpga
7404
- ##ght
7405
- ##gs
7406
- iso9001
7407
- ##ile
7408
- ##wood
7409
- ##uo
7410
- image
7411
- lin
7412
- icon
7413
- american
7414
- ##em
7415
- set
7416
- says
7417
- ##king
7418
- ##tive
7419
- blogger
7420
- ##ox
7421
- ##zy
7422
- ##red
7423
- ##ium
7424
- ##lf
7425
- nokia
7426
- claire
7427
- ##ding
7428
- november
7429
- lohas
7430
- ##tic
7431
- ##cs
7432
- ##che
7433
- ##ire
7434
- ##gy
7435
- ##ult
7436
- db
7437
- january
7438
- win
7439
- road
7440
- ptt
7441
- ##fa
7442
- ##mer
7443
- anna
7444
- pchome
7445
- udn
7446
- ef
7447
- ##time
7448
- ##tte
7449
- g20
7450
- white
7451
- garden
7452
- eleven
7453
- di
7454
- chen
7455
- young
7456
- cosplay
7457
- bat
7458
- ##tra
7459
- kindle
7460
- npc
7461
- steve
7462
- etc
7463
- ##ern
7464
- call
7465
- xperia
7466
- ces
7467
- travel
7468
- sk
7469
- s7
7470
- ##ous
7471
- ##int
7472
- edu
7473
- file
7474
- cho
7475
- qr
7476
- ##car
7477
- ##our
7478
- ##ant
7479
- eric
7480
- rends
7481
- ##jo
7482
- mastercard
7483
- kb
7484
- ##min
7485
- ##ino
7486
- vista
7487
- ##ris
7488
- ##ud
7489
- jack
7490
- ##set
7491
- pos
7492
- ##her
7493
- ##ou
7494
- taipei
7495
- beta
7496
- ##fi
7497
- express
7498
- body
7499
- ##ill
7500
- aphojoy
7501
- user
7502
- december
7503
- meiki
7504
- ##ick
7505
- tweet
7506
- richard
7507
- ##av
7508
- iphone6
7509
- ##dd
7510
- views
7511
- ##mark
7512
- pd
7513
- times
7514
- level
7515
- ##ash
7516
- point
7517
- ##ome
7518
- koreanmall
7519
- ##ak
7520
- george
7521
- q2
7522
- wma
7523
- tcp
7524
- full
7525
- mlb
7526
- ##lle
7527
- ##watch
7528
- tm
7529
- run
7530
- smith
7531
- business
7532
- ##und
7533
- color
7534
- ##tal
7535
- ##less
7536
- moon
7537
- ##rl
7538
- update
7539
- pcb
7540
- shop
7541
- little
7542
- end
7543
- ##mhz
7544
- van
7545
- dsp
7546
- easy
7547
- ##house
7548
- ##key
7549
- history
7550
- oh
7551
- ##hy
7552
- ##web
7553
- oem
7554
- let
7555
- was
7556
- ##gg
7557
- review
7558
- ##wan
7559
- ##°c
7560
- uc
7561
- title
7562
- ##val
7563
- united
7564
- ##ons
7565
- doi
7566
- trivago
7567
- overdope
7568
- sbs
7569
- ##ance
7570
- grand
7571
- special
7572
- imf
7573
- wx17house
7574
- ##so
7575
- audi
7576
- ##he
7577
- london
7578
- william
7579
- ##rp
7580
- ##ake
7581
- science
7582
- beach
7583
- cfa
7584
- amp
7585
- ps4
7586
- ##link
7587
- ##hp
7588
- crm
7589
- ferragamo
7590
- bell
7591
- make
7592
- ##eng
7593
- under
7594
- zh
7595
- photos
7596
- ##style
7597
- via
7598
- da
7599
- ##gi
7600
- company
7601
- i7
7602
- ##ray
7603
- thomas
7604
- ufo
7605
- i5
7606
- ##max
7607
- plc
7608
- ben
7609
- back
7610
- research
7611
- mike
7612
- ##pc
7613
- september
7614
- ##ace
7615
- vps
7616
- february
7617
- pantos
7618
- wp
7619
- lisa
7620
- jquery
7621
- night
7622
- long
7623
- offer
7624
- ##berg
7625
- ##news
7626
- ray
7627
- fks
7628
- wto
7629
- over
7630
- ##all
7631
- ##rus
7632
- ##works
7633
- blogtitle
7634
- loftpermalink
7635
- martin
7636
- test
7637
- ling
7638
- km
7639
- fda
7640
- v3
7641
- ##ja
7642
- outlet
7643
- family
7644
- ##ea
7645
- ##top
7646
- story
7647
- ##ness
7648
- salvatore
7649
- ##lu
7650
- swift
7651
- room
7652
- oracle
7653
- ##ul
7654
- sam
7655
- b2c
7656
- week
7657
- pi
7658
- rock
7659
- ##ean
7660
- ##gle
7661
- cctv
7662
- after
7663
- chinese
7664
- ##back
7665
- powered
7666
- x2
7667
- ##tan
7668
- ##nes
7669
- canon
7670
- only
7671
- ##zi
7672
- ##las
7673
- say
7674
- ##oe
7675
- ##sd
7676
- ##bot
7677
- ##world
7678
- ##zo
7679
- sky
7680
- made
7681
- top100
7682
- just
7683
- pmi
7684
- gap
7685
- ##vr
7686
- les
7687
- ball
7688
- vogue
7689
- vi
7690
- ing
7691
- ofweek
7692
- cos
7693
- ##list
7694
- ##ort
7695
- ##lon
7696
- last
7697
- ##tc
7698
- ##of
7699
- ##bus
7700
- ##gen
7701
- real
7702
- eva
7703
- a3
7704
- nas
7705
- ##lie
7706
- ##ria
7707
- ##coin
7708
- ##bt
7709
- his
7710
- cat
7711
- nata
7712
- vive
7713
- health
7714
- drive
7715
- sir
7716
- du
7717
- cup
7718
- ##ook
7719
- ##sy
7720
- alex
7721
- msg
7722
- tour
7723
- ##word
7724
- ebooks
7725
- r8
7726
- block
7727
- nice
7728
- pvp
7729
- months
7730
- rewards
7731
- ##ther
7732
- ##xi
7733
- ##sc
7734
- micro
7735
- gg
7736
- blogfp
7737
- op
7738
- daily
7739
- m1
7740
- true
7741
- ##bb
7742
- ml
7743
- ##tar
7744
- ##ky
7745
- anthony
7746
- ##yo
7747
- state
7748
- ##ara
7749
- ##aa
7750
- ##rc
7751
- ##tz
7752
- ##ston
7753
- gear
7754
- ##eo
7755
- ##ade
7756
- ge
7757
- see
7758
- ##win
7759
- ##ura
7760
- ss
7761
- heart
7762
- ##den
7763
- ##ita
7764
- down
7765
- ##sm
7766
- el
7767
- png
7768
- rakuten
7769
- whatsapp
7770
- bay
7771
- dream
7772
- add
7773
- ##use
7774
- pad
7775
- gucci
7776
- mpv
7777
- ##ode
7778
- ##fo
7779
- island
7780
- jason
7781
- chicago
7782
- ##hone
7783
- io
7784
- sogo
7785
- be2
7786
- ##ology
7787
- cloud
7788
- vcd
7789
- ##con
7790
- ##ford
7791
- ##joy
7792
- ##kb
7793
- ##rade
7794
- but
7795
- ##ach
7796
- docker
7797
- ##ful
7798
- rfid
7799
- ul
7800
- ##ase
7801
- hit
7802
- ford
7803
- ##star
7804
- a2
7805
- sdk
7806
- reading
7807
- edited
7808
- ##are
7809
- cmos
7810
- ##mc
7811
- siri
7812
- light
7813
- ##ella
7814
- bloomberg
7815
- ##read
7816
- pizza
7817
- ##ison
7818
- jimmy
7819
- ##vm
7820
- college
7821
- node
7822
- journal
7823
- ba
7824
- ##play
7825
- ##cer
7826
- magic
7827
- ##yu
7828
- jump
7829
- tt
7830
- ##ings
7831
- asr
7832
- ##lia
7833
- step5
7834
- network
7835
- ##cd
7836
- mc
7837
- pixstyleme
7838
- money
7839
- bl
7840
- act
7841
- ##tus
7842
- tokyo
7843
- ##rial
7844
- ##life
7845
- emba
7846
- ##ae
7847
- saas
7848
- tcs
7849
- ##rk
7850
- ##wang
7851
- summer
7852
- ##sp
7853
- ko
7854
- ##ving
7855
- premium
7856
- netflix
7857
- uk
7858
- mt
7859
- ##lton
7860
- right
7861
- frank
7862
- two
7863
- ##ple
7864
- ##cal
7865
- ##sen
7866
- ##ville
7867
- hold
7868
- nexus
7869
- dd
7870
- ##ius
7871
- ##mah
7872
- tila
7873
- zero
7874
- ce
7875
- ##tin
7876
- resort
7877
- ##ws
7878
- charles
7879
- old
7880
- p10
7881
- report
7882
- ##ru
7883
- bus
7884
- vans
7885
- lt
7886
- ##est
7887
- pv
7888
- links
7889
- rebecca
7890
- ##dm
7891
- azure
7892
- limited
7893
- bit
7894
- ##mon
7895
- moto
7896
- ##eam
7897
- var
7898
- eos
7899
- blogspot
7900
- e3
7901
- dos
7902
- dm
7903
- fc
7904
- ##ments
7905
- ##ik
7906
- ##kw
7907
- boy
7908
- ##bin
7909
- ##ata
7910
- er
7911
- ##vin
7912
- ##tu
7913
- ##ula
7914
- station
7915
- ##ature
7916
- files
7917
- zara
7918
- hdr
7919
- top10
7920
- nature
7921
- magazine
7922
- s6
7923
- marriott
7924
- avira
7925
- case
7926
- tab
7927
- ##ran
7928
- tony
7929
- ##home
7930
- oculus
7931
- im
7932
- ##ral
7933
- jean
7934
- saint
7935
- cry
7936
- rosie
7937
- ##force
7938
- ##ini
7939
- ice
7940
- ##bert
7941
- ##nder
7942
- ##mber
7943
- pet
7944
- plurk
7945
- ##sis
7946
- ##ence
7947
- tim
7948
- ##nc
7949
- ##name
7950
- log
7951
- ips
7952
- great
7953
- ikea
7954
- malaysia
7955
- unix
7956
- ##ncy
7957
- ##nie
7958
- akb48
7959
- ##ye
7960
- ##oid
7961
- ##chi
7962
- oa
7963
- xuehai
7964
- ##orm
7965
- ##rf
7966
- ##ware
7967
- ho
7968
- ##pro
7969
- text
7970
- ##era
7971
- bob
7972
- ##ub
7973
- scp
7974
- avi
7975
- ##zen
7976
- mi
7977
- wu
7978
- museum
7979
- qvod
7980
- apache
7981
- lake
7982
- jcb
7983
- ni
7984
- ##hr
7985
- hill
7986
- ne
7987
- weibo
7988
- ruby
7989
- ##row
7990
- iv
7991
- ##ish
7992
- github
7993
- mate
7994
- ##lot
7995
- ##ane
7996
- andrew
7997
- ##tina
7998
- t1
7999
- rf
8000
- ed2k
8001
- ##vel
8002
- way
8003
- final
8004
- ns
8005
- sweet
8006
- bytes
8007
- ##ene
8008
- ##cker
8009
- ##px
8010
- topapp
8011
- helpapp
8012
- rs
8013
- low
8014
- g4g
8015
- care
8016
- ldquo
8017
- ##fork
8018
- leave
8019
- rm
8020
- edition
8021
- ##gan
8022
- ##zon
8023
- ##qq
8024
- ##google
8025
- ##ism
8026
- gold
8027
- explorer
8028
- ##zer
8029
- toyota
8030
- category
8031
- select
8032
- visual
8033
- ##labels
8034
- restaurant
8035
- ##md
8036
- posts
8037
- s1
8038
- ##ico
8039
- angelababy
8040
- sports
8041
- s3
8042
- mbc
8043
- shell
8044
- x86
8045
- candy
8046
- ##new
8047
- kbs
8048
- face
8049
- xl
8050
- ##here
8051
- swissinfo
8052
- v8
8053
- dram
8054
- ##ual
8055
- ##vice
8056
- ##wer
8057
- sport
8058
- q1
8059
- ios10
8060
- public
8061
- int
8062
- card
8063
- ep
8064
- au
8065
- rt
8066
- bill
8067
- ##mll
8068
- kim
8069
- wan
8070
- ##uk
8071
- x3
8072
- scott
8073
- ##ming
8074
- e5
8075
- h7n9
8076
- worldcat
8077
- brown
8078
- ##vo
8079
- ##led
8080
- ##ax
8081
- ##ert
8082
- paris
8083
- polo
8084
- ##lr
8085
- capital
8086
- ##hing
8087
- bank
8088
- cv
8089
- ##chat
8090
- adc
8091
- ##ule
8092
- digital
8093
- hotmail
8094
- ##pad
8095
- bbq
8096
- quot
8097
- ##ring
8098
- before
8099
- wali
8100
- mcu
8101
- costco
8102
- north
8103
- switch
8104
- ##city
8105
- philips
8106
- ##mann
8107
- management
8108
- panasonic
8109
- ##cl
8110
- ##vd
8111
- ##ping
8112
- ##rge
8113
- alice
8114
- ##lk
8115
- css3
8116
- ##ney
8117
- vision
8118
- alpha
8119
- ##ular
8120
- ##tter
8121
- lz
8122
- mode
8123
- gre
8124
- pci
8125
- ##tm
8126
- ##yan
8127
- ##let
8128
- work
8129
- war
8130
- coach
8131
- ah
8132
- mary
8133
- huang
8134
- ##pt
8135
- a8
8136
- pt
8137
- follow
8138
- ##berry
8139
- ##ew
8140
- a5
8141
- ghost
8142
- ##wn
8143
- ##og
8144
- south
8145
- ##code
8146
- girls
8147
- ##rid
8148
- action
8149
- villa
8150
- git
8151
- r11
8152
- table
8153
- games
8154
- ##cket
8155
- error
8156
- ##anonymoussaid
8157
- ##ag
8158
- here
8159
- ##ame
8160
- ##gc
8161
- qa
8162
- ##lis
8163
- gmp
8164
- ##gin
8165
- vmalife
8166
- ##cher
8167
- yu
8168
- wedding
8169
- ##tis
8170
- demo
8171
- dragon
8172
- soho
8173
- social
8174
- bye
8175
- ##rant
8176
- river
8177
- orz
8178
- acer
8179
- ##ats
8180
- del
8181
- ##ven
8182
- ups
8183
- value
8184
- macd
8185
- yougou
8186
- ##dn
8187
- ##ano
8188
- ll
8189
- ##urt
8190
- ##rent
8191
- continue
8192
- script
8193
- ##wen
8194
- ##ect
8195
- paper
8196
- shift
8197
- ##chel
8198
- ##cat
8199
- x5
8200
- fox
8201
- car
8202
- aaa
8203
- ##blog
8204
- loading
8205
- ##yn
8206
- ##tp
8207
- kuso
8208
- si
8209
- sns
8210
- rmb
8211
- vdc
8212
- forest
8213
- central
8214
- prime
8215
- help
8216
- ultra
8217
- ##rmb
8218
- square
8219
- ##field
8220
- ##reen
8221
- ##ors
8222
- ##ju
8223
- c1
8224
- start
8225
- ##air
8226
- ##map
8227
- cdn
8228
- ##wo
8229
- cba
8230
- stephen
8231
- m8
8232
- ##get
8233
- opera
8234
- ##base
8235
- ##ood
8236
- vsa
8237
- com™
8238
- ##aw
8239
- ##ail
8240
- count
8241
- t2
8242
- ##een
8243
- hop
8244
- ##gp
8245
- vsc
8246
- tree
8247
- ##eg
8248
- ##ose
8249
- ##ories
8250
- ##shop
8251
- alphago
8252
- v4
8253
- simon
8254
- fluke62max
8255
- zip
8256
- ##sta
8257
- louis
8258
- cr
8259
- bas
8260
- bc
8261
- ##yer
8262
- hadoop
8263
- ##ube
8264
- ##wi
8265
- hola
8266
- ##low
8267
- place
8268
- centre
8269
- d3
8270
- ##fer
8271
- ##media
8272
- exchange
8273
- series
8274
- ##san
8275
- eb
8276
- ##bank
8277
- q3
8278
- ##nge
8279
- ##mail
8280
- take
8281
- ##lp
8282
- client
8283
- east
8284
- cache
8285
- event
8286
- vincent
8287
- ##nse
8288
- sui
8289
- adchoice
8290
- ##stry
8291
- ##zone
8292
- ga
8293
- apps
8294
- sea
8295
- ##ab
8296
- cisco
8297
- ##rner
8298
- kymco
8299
- ##care
8300
- dha
8301
- ##pu
8302
- ##yi
8303
- minkoff
8304
- royal
8305
- p1
8306
- annie
8307
- collection
8308
- kpi
8309
- playstation
8310
- bh
8311
- ##bar
8312
- queen
8313
- radio
8314
- andy
8315
- armani
8316
- ##xy
8317
- manager
8318
- iherb
8319
- ##ery
8320
- ##share
8321
- spring
8322
- raid
8323
- johnson
8324
- ##ob
8325
- volvo
8326
- hall
8327
- ##ball
8328
- v6
8329
- our
8330
- taylor
8331
- ##hk
8332
- bi
8333
- ##cp
8334
- kate
8335
- bo
8336
- water
8337
- technology
8338
- ##rie
8339
- ##ona
8340
- ##sl
8341
- hpv
8342
- gtx
8343
- hip
8344
- rdquo
8345
- jayz
8346
- stone
8347
- ##lex
8348
- ##rum
8349
- namespace
8350
- ##ale
8351
- ##atic
8352
- des
8353
- ##erson
8354
- ##ql
8355
- ##ves
8356
- ##type
8357
- enter
8358
- d2
8359
- ##mix
8360
- ##bian
8361
- a9
8362
- jj
8363
- ky
8364
- ##lc
8365
- access
8366
- movie
8367
- ##hc
8368
- tower
8369
- ##ration
8370
- ##mit
8371
- ##nch
8372
- ua
8373
- tel
8374
- prefix
8375
- ##o2
8376
- ##point
8377
- ott
8378
- ##http
8379
- ##ury
8380
- baidu
8381
- ##ink
8382
- member
8383
- ##logy
8384
- bigbang
8385
- nownews
8386
- ##js
8387
- ##shot
8388
- ##tb
8389
- eba
8390
- ##tics
8391
- ##lus
8392
- v5
8393
- spark
8394
- ##ama
8395
- there
8396
- ##ions
8397
- god
8398
- ##lls
8399
- ##down
8400
- hiv
8401
- ##ress
8402
- burberry
8403
- day2
8404
- ##kv
8405
- jeff
8406
- related
8407
- film
8408
- edit
8409
- joseph
8410
- ##ark
8411
- cx
8412
- order
8413
- g9
8414
- ##ans
8415
- ##tty
8416
- s5
8417
- ##bee
8418
- thread
8419
- xr
8420
- buy
8421
- sh
8422
- land
8423
- spotify
8424
- mx
8425
- ##ari
8426
- ##verse
8427
- sf
8428
- why
8429
- nego
8430
- sunny
8431
- dom
8432
- exo
8433
- positioning
8434
- fit
8435
- rgb
8436
- ##tton
8437
- kiss
8438
- alexa
8439
- adam
8440
- lp
8441
- mp
8442
- ##ties
8443
- ##llow
8444
- amy
8445
- ##du
8446
- np
8447
- institute
8448
- ##rth
8449
- ##lar
8450
- ##des
8451
- sidebar
8452
- imax
8453
- site
8454
- ##cky
8455
- ##kit
8456
- ##ime
8457
- season
8458
- ##fun
8459
- gogoro
8460
- a7
8461
- pu
8462
- lily
8463
- fire
8464
- twd600
8465
- ##vis
8466
- ##cture
8467
- information
8468
- close
8469
- friday
8470
- yi
8471
- nick
8472
- ##tta
8473
- ##tel
8474
- ##lock
8475
- cbd
8476
- economy
8477
- tinker
8478
- double
8479
- voice
8480
- ##app
8481
- oops
8482
- channel
8483
- today
8484
- ##right
8485
- raw
8486
- xyz
8487
- jim
8488
- edm
8489
- ##cent
8490
- supreme
8491
- ds
8492
- ##its
8493
- ##asia
8494
- dropbox
8495
- ##tti
8496
- books
8497
- ##tle
8498
- ##ller
8499
- ##ken
8500
- ##more
8501
- ##boy
8502
- sex
8503
- ##dom
8504
- t3
8505
- ##ider
8506
- ##unch
8507
- feel
8508
- ##put
8509
- s2
8510
- mo
8511
- ##gh
8512
- men
8513
- ka
8514
- amoled
8515
- div
8516
- ##tr
8517
- ##n1
8518
- port
8519
- howard
8520
- ##tags
8521
- ken
8522
- dnf
8523
- ##nus
8524
- adsense
8525
- ide
8526
- buff
8527
- thunder
8528
- ##town
8529
- ##ique
8530
- has
8531
- ##body
8532
- auto
8533
- pin
8534
- ##erry
8535
- tee
8536
- number
8537
- ##the
8538
- object
8539
- psp
8540
- cool
8541
- udnbkk
8542
- ##mic
8543
- miui
8544
- ##tro
8545
- most
8546
- r2
8547
- ##alk
8548
- ##nity
8549
- s4
8550
- law
8551
- version
8552
- ##oa
8553
- n1
8554
- sgs
8555
- docomo
8556
- ##tf
8557
- ##ack
8558
- henry
8559
- fc2
8560
- ##ded
8561
- ##sco
8562
- ##rite
8563
- linkedin
8564
- ##ada
8565
- ##now
8566
- wii
8567
- ##ndy
8568
- ucbug
8569
- sputniknews
8570
- legalminer
8571
- ##ika
8572
- ##xp
8573
- ##bu
8574
- q10
8575
- oo
8576
- b6
8577
- come
8578
- ##rman
8579
- cheese
8580
- ming
8581
- maker
8582
- ##gm
8583
- nikon
8584
- ##fig
8585
- ppi
8586
- kelly
8587
- jchere
8588
- ted
8589
- md
8590
- fgo
8591
- tech
8592
- ##tto
8593
- dan
8594
- soc
8595
- ##gl
8596
- ##len
8597
- hair
8598
- earth
8599
- img
8600
- ##pper
8601
- ##a1
8602
- acca
8603
- ##ition
8604
- ##ference
8605
- suite
8606
- ##ig
8607
- outlook
8608
- ##mond
8609
- ##cation
8610
- ##pr
8611
- airport
8612
- ##over
8613
- jones
8614
- ##ith
8615
- lab
8616
- ##su
8617
- co2
8618
- town
8619
- piece
8620
- ##llo
8621
- no1
8622
- vmware
8623
- ##qi
8624
- focus
8625
- reader
8626
- ##admin
8627
- ##ora
8628
- tb
8629
- false
8630
- ##log
8631
- know
8632
- lan
8633
- ##ces
8634
- f4
8635
- ##ume
8636
- motel
8637
- stop
8638
- ##oper
8639
- na
8640
- flickr
8641
- netcomponents
8642
- ##af
8643
- pose
8644
- williams
8645
- local
8646
- ##ound
8647
- ##cg
8648
- ##site
8649
- ##iko
8650
- gsm
8651
- con
8652
- ##ath
8653
- friends
8654
- ##hip
8655
- cell
8656
- ##rey
8657
- cream
8658
- ##cks
8659
- ##dp
8660
- facebooktwitterpinterestgoogle
8661
- sso
8662
- shtml
8663
- song
8664
- swiss
8665
- ##mw
8666
- lumia
8667
- xdd
8668
- string
8669
- tiffany
8670
- marc
8671
- insee
8672
- russell
8673
- sc
8674
- dell
8675
- ##ations
8676
- camera
8677
- ##vs
8678
- ##flow
8679
- ##late
8680
- classic
8681
- ##nter
8682
- stay
8683
- g1
8684
- mtv
8685
- ##ever
8686
- ##lab
8687
- ##nger
8688
- qe
8689
- sata
8690
- ryan
8691
- d1
8692
- cms
8693
- ##cing
8694
- su
8695
- editor
8696
- ##nap
8697
- security
8698
- sunday
8699
- association
8700
- ##ens
8701
- ##bra
8702
- acg
8703
- sofascore
8704
- mkv
8705
- ##ign
8706
- jonathan
8707
- gary
8708
- build
8709
- labels
8710
- ##oto
8711
- tesla
8712
- moba
8713
- qi
8714
- gohappy
8715
- general
8716
- ajax
8717
- society
8718
- ##test
8719
- ##urs
8720
- wps
8721
- fedora
8722
- ##ich
8723
- mozilla
8724
- ##dr
8725
- usa
8726
- urn
8727
- ##lina
8728
- grace
8729
- ##die
8730
- ##try
8731
- ##ader
8732
- elle
8733
- ##chen
8734
- price
8735
- ##ten
8736
- uhz
8737
- ##ough
8738
- eq
8739
- ##hen
8740
- states
8741
- push
8742
- session
8743
- balance
8744
- wow
8745
- ##cus
8746
- ##py
8747
- when
8748
- ##ward
8749
- ##ep
8750
- wong
8751
- library
8752
- prada
8753
- ##cle
8754
- running
8755
- ##ree
8756
- ck
8757
- date
8758
- q4
8759
- ##ctive
8760
- ##ool
8761
- mk
8762
- ##ira
8763
- die
8764
- secret
8765
- rq
8766
- dota
8767
- buffet
8768
- e6
8769
- ##ez
8770
- pan
8771
- ha
8772
- ##card
8773
- ##cha
8774
- alan
8775
- day3
8776
- eye
8777
- f3
8778
- ##end
8779
- france
8780
- keep
8781
- adi
8782
- rna
8783
- tvbs
8784
- ##ala
8785
- solo
8786
- nova
8787
- ##tail
8788
- support
8789
- ##ries
8790
- ##ved
8791
- base
8792
- copy
8793
- iis
8794
- fps
8795
- ##ways
8796
- hero
8797
- hgih
8798
- profile
8799
- fish
8800
- mu
8801
- ssh
8802
- entertainment
8803
- chang
8804
- ##wd
8805
- click
8806
- cake
8807
- ##ond
8808
- pre
8809
- ##tom
8810
- kic
8811
- pixel
8812
- ##ov
8813
- ##fl
8814
- product
8815
- ##pd
8816
- dear
8817
- ##gate
8818
- es
8819
- yumi
8820
- audio
8821
- ##²
8822
- ##sky
8823
- echo
8824
- bin
8825
- where
8826
- ##ture
8827
- ##ape
8828
- find
8829
- sap
8830
- isis
8831
- nand
8832
- ##load
8833
- ##ream
8834
- band
8835
- a6
8836
- never
8837
- ##post
8838
- festival
8839
- ##we
8840
- guide
8841
- zenfone
8842
- ##ike
8843
- gd
8844
- forum
8845
- jessica
8846
- strong
8847
- alexander
8848
- ##ould
8849
- software
8850
- allen
8851
- ##ious
8852
- program
8853
- else
8854
- lohasthree
8855
- ##gar
8856
- please
8857
- rc
8858
- ##ggle
8859
- ##ric
8860
- bim
8861
- ##own
8862
- eclipse
8863
- brian
8864
- ##side
8865
- ##other
8866
- ##tech
8867
- ##ator
8868
- engine
8869
- ##ged
8870
- plaza
8871
- ##fit
8872
- cia
8873
- ngo
8874
- westbrook
8875
- shi
8876
- tbs
8877
- sci
8878
- reuters
8879
- ##ily
8880
- contextlink
8881
- ##hn
8882
- af
8883
- ##cil
8884
- bridge
8885
- very
8886
- ##cel
8887
- cambridge
8888
- ##ize
8889
- ##aid
8890
- ##data
8891
- frm
8892
- ##head
8893
- award
8894
- butler
8895
- ##sun
8896
- meta
8897
- ##mar
8898
- america
8899
- ps3
8900
- puma
8901
- pmid
8902
- lc
8903
- kitchen
8904
- ##lic
8905
- day1
8906
- future
8907
- ##text
8908
- ##page
8909
- ##rris
8910
- pm1
8911
- ##ket
8912
- fans
8913
- christian
8914
- bot
8915
- kids
8916
- trackback
8917
- ##hai
8918
- c3
8919
- display
8920
- ##hl
8921
- n2
8922
- idea
8923
- ##sent
8924
- airmail
8925
- ##ug
8926
- ##men
8927
- pwm
8928
- ##lution
8929
- awards
8930
- schemas
8931
- asics
8932
- wikipedia
8933
- font
8934
- ##tional
8935
- ##vy
8936
- c2
8937
- ##dget
8938
- ##ein
8939
- contact
8940
- pepper
8941
- ##uel
8942
- ##ument
8943
- ##hang
8944
- q5
8945
- ##sue
8946
- rain
8947
- ##ndi
8948
- wei
8949
- swatch
8950
- ##cept
8951
- popular
8952
- ##ste
8953
- ##tag
8954
- p2
8955
- trc
8956
- ##west
8957
- ##live
8958
- justin
8959
- honda
8960
- ping
8961
- messenger
8962
- ##rap
8963
- v9
8964
- unity
8965
- appqq
8966
- leo
8967
- ##tone
8968
- ##ass
8969
- uniqlo
8970
- her
8971
- jane
8972
- memory
8973
- moneydj
8974
- ##tical
8975
- human
8976
- ##m2
8977
- coc
8978
- miacare
8979
- ##mn
8980
- tmt
8981
- ##core
8982
- vim
8983
- kk
8984
- ##may
8985
- fan
8986
- target
8987
- use
8988
- too
8989
- fast
8990
- services
8991
- ##ope
8992
- omega
8993
- energy
8994
- pinkoi
8995
- ##rain
8996
- jackson
8997
- ##ement
8998
- p9
8999
- rd
9000
- ##tier
9001
- ##vic
9002
- zone
9003
- dl
9004
- isofix
9005
- cpa
9006
- m4
9007
- kimi
9008
- davis
9009
- ##lay
9010
- lulu
9011
- ##uck
9012
- weeks
9013
- qs
9014
- ##hop
9015
- ae
9016
- ##ear
9017
- eia
9018
- ##fly
9019
- korea
9020
- jpeg
9021
- boost
9022
- ##ship
9023
- small
9024
- eur
9025
- valley
9026
- ##iel
9027
- simple
9028
- ##ude
9029
- rn
9030
- k2
9031
- ##ena
9032
- non
9033
- patrick
9034
- feed
9035
- process
9036
- well
9037
- qqmei
9038
- ##thing
9039
- they
9040
- aws
9041
- lu
9042
- pink
9043
- ##ters
9044
- ##kin
9045
- board
9046
- ##vertisement
9047
- wine
9048
- ##ien
9049
- unicode
9050
- ##dge
9051
- r1
9052
- ##tant
9053
- ##twitter
9054
- cool1
9055
- isp
9056
- standard
9057
- matt
9058
- ##fu
9059
- ##iner
9060
- googlemsn
9061
- pixnetfacebookyahoo
9062
- x7
9063
- ##uce
9064
- sao
9065
- ##ev
9066
- ##file
9067
- xddd
9068
- shirt
9069
- ##rio
9070
- ##hat
9071
- givenchy
9072
- ya
9073
- bang
9074
- ##lio
9075
- monday
9076
- crystal
9077
- ##abc
9078
- head
9079
- ubuntuforumwikilinuxpastechat
9080
- ##vc
9081
- ##rity
9082
- cnc
9083
- ipv6
9084
- null
9085
- ##ost
9086
- yang
9087
- imsean
9088
- tiger
9089
- ##fet
9090
- dji
9091
- ji
9092
- maria
9093
- ##come
9094
- foundation
9095
- ##beth
9096
- active
9097
- ##aft
9098
- ##don
9099
- sr
9100
- emma
9101
- ##khz
9102
- living
9103
- sas
9104
- x6
9105
- ##face
9106
- pptv
9107
- x4
9108
- ##mate
9109
- han
9110
- sophie
9111
- ##jing
9112
- fifa
9113
- ##mand
9114
- other
9115
- sale
9116
- inwedding
9117
- ##gn
9118
- ##mmy
9119
- ##pmlast
9120
- bad
9121
- nana
9122
- nbc
9123
- ##wu
9124
- note7
9125
- single
9126
- ##bel
9127
- window
9128
- ##dio
9129
- ##ht
9130
- union
9131
- age
9132
- ##ivity
9133
- domain
9134
- neo
9135
- ##isa
9136
- ##lter
9137
- f5
9138
- steven
9139
- ##cts
9140
- powerpoint
9141
- tft
9142
- self
9143
- g2
9144
- ft
9145
- zol
9146
- ##act
9147
- mwc
9148
- nbapop
9149
- eds
9150
- ace
9151
- ##room
9152
- previous
9153
- author
9154
- tomtom
9155
- il
9156
- ##ets
9157
- hu
9158
- financial
9159
- bp
9160
- chi
9161
- ##hg
9162
- fairmont
9163
- cross
9164
- gay
9165
- h2
9166
- function
9167
- also
9168
- ##raph
9169
- ##ils
9170
- i3
9171
- avenue
9172
- ##host
9173
- ##bon
9174
- ##tsu
9175
- message
9176
- navigation
9177
- fintech
9178
- h6
9179
- ##ject
9180
- ##vas
9181
- ##firm
9182
- credit
9183
- ##wf
9184
- xxxx
9185
- form
9186
- ##nor
9187
- ##space
9188
- huawei
9189
- plan
9190
- json
9191
- sbl
9192
- ##dc
9193
- machine
9194
- wish
9195
- ##sol
9196
- windows7
9197
- edward
9198
- development
9199
- washington
9200
- ##nsis
9201
- lo
9202
- ##sio
9203
- ##ym
9204
- ##bor
9205
- planet
9206
- ##wt
9207
- ieee
9208
- gpa
9209
- camp
9210
- ann
9211
- gm
9212
- ##tw
9213
- ##oka
9214
- connect
9215
- ##rss
9216
- ##work
9217
- ##atus
9218
- wall
9219
- chicken
9220
- soul
9221
- ##times
9222
- fa
9223
- ##ather
9224
- ##cord
9225
- ##eep
9226
- hitachi
9227
- gui
9228
- harry
9229
- ##pan
9230
- e1
9231
- disney
9232
- ##press
9233
- wind
9234
- frigidaire
9235
- ##tl
9236
- liu
9237
- hsu
9238
- basic
9239
- von
9240
- ev
9241
- learning
9242
- ##ull
9243
- expedia
9244
- archives
9245
- change
9246
- ##wei
9247
- santa
9248
- cut
9249
- ins
9250
- turbo
9251
- brand
9252
- cf1
9253
- return
9254
- ##rip
9255
- h1
9256
- ##nis
9257
- application
9258
- emc
9259
- rx
9260
- ##oon
9261
- quick
9262
- wilson
9263
- wing
9264
- chapter
9265
- ##bug
9266
- beyond
9267
- ##cms
9268
- ##dar
9269
- ##oh
9270
- zoom
9271
- e2
9272
- trip
9273
- sb
9274
- ##nba
9275
- rcep
9276
- aspx
9277
- ci
9278
- gc
9279
- gnu
9280
- ##count
9281
- advanced
9282
- dance
9283
- dv
9284
- ##url
9285
- ##ging
9286
- am09
9287
- shadow
9288
- battle
9289
- ##cia
9290
- emily
9291
- ##tation
9292
- host
9293
- ff
9294
- techorz
9295
- sars
9296
- ##mini
9297
- ##mporary
9298
- ##ering
9299
- nc
9300
- ##next
9301
- cma
9302
- ##mbps
9303
- ##gas
9304
- ##ift
9305
- ##dot
9306
- amana
9307
- ##ros
9308
- ir
9309
- ##eet
9310
- ##ible
9311
- ##aka
9312
- dcs
9313
- iq
9314
- l1
9315
- ##lor
9316
- maggie
9317
- ##iu
9318
- ##gt
9319
- articles
9320
- create
9321
- ##burg
9322
- ##iki
9323
- database
9324
- fantasy
9325
- ##rex
9326
- ##cam
9327
- dlc
9328
- dean
9329
- ##you
9330
- hard
9331
- path
9332
- gaming
9333
- victoria
9334
- maps
9335
- cb
9336
- ##lee
9337
- ##itor
9338
- overchicstoretvhome
9339
- systems
9340
- ##xt
9341
- p3
9342
- sarah
9343
- ##nan
9344
- x9
9345
- install
9346
- second
9347
- ##ann
9348
- ##ph
9349
- ##rcle
9350
- ##nic
9351
- ##nar
9352
- ec
9353
- metro
9354
- chocolate
9355
- ##rian
9356
- ##table
9357
- skin
9358
- ##sn
9359
- mountain
9360
- inparadise
9361
- ib
9362
- ##jia
9363
- eeworld
9364
- creative
9365
- g5
9366
- g3
9367
- parker
9368
- ecfa
9369
- village
9370
- sylvia
9371
- hbl
9372
- ##ques
9373
- ##onsored
9374
- ##x2
9375
- ##v4
9376
- ##tein
9377
- ie6
9378
- ##stack
9379
- ver
9380
- ##ads
9381
- ##baby
9382
- sound
9383
- bbe
9384
- ##lone
9385
- ##uid
9386
- ads
9387
- gundam
9388
- thinkpad
9389
- scrum
9390
- match
9391
- ##ave
9392
- mems
9393
- ##oy
9394
- ##talk
9395
- glass
9396
- lamigo
9397
- span
9398
- ##eme
9399
- job
9400
- ##a5
9401
- jay
9402
- wade
9403
- kde
9404
- ##lace
9405
- ocean
9406
- tvg
9407
- ##covery
9408
- ##r3
9409
- ##ners
9410
- ##rea
9411
- junior
9412
- think
9413
- ##aine
9414
- cover
9415
- ##ision
9416
- ##sia
9417
- ##bow
9418
- msi
9419
- ##love
9420
- soft
9421
- z2
9422
- ##pl
9423
- mobil
9424
- mind
9425
- ##uy
9426
- nginx
9427
- ##oi
9428
- ##rr
9429
- ##mple
9430
- ##sson
9431
- ##nts
9432
- comhd
9433
- crv3000
9434
- ##uard
9435
- deep
9436
- lost
9437
- field
9438
- gallery
9439
- ##bia
9440
- rate
9441
- spf
9442
- redis
9443
- traction
9444
- icloud
9445
- fe
9446
- jose
9447
- ##tory
9448
- into
9449
- sohu
9450
- fx
9451
- kicstart2
9452
- ##hia
9453
- ##sit
9454
- ra
9455
- ##walk
9456
- ##xure
9457
- ##pact
9458
- pacific
9459
- xa
9460
- natural
9461
- carlo
9462
- ##walker
9463
- ##can
9464
- cto
9465
- gigi
9466
- pen
9467
- ##hoo
9468
- ob
9469
- matlab
9470
- ##yy
9471
- ##iti
9472
- mango
9473
- ##bbs
9474
- sense
9475
- c5
9476
- oxford
9477
- walker
9478
- jennifer
9479
- ##ola
9480
- course
9481
- ##bre
9482
- ##pus
9483
- ##rder
9484
- lucky
9485
- ivy
9486
- ##nia
9487
- sotheby
9488
- side
9489
- ##ugh
9490
- joy
9491
- ##orage
9492
- ##ush
9493
- ##bat
9494
- ##dt
9495
- r9
9496
- ##gio
9497
- country
9498
- wear
9499
- ##lax
9500
- ##moon
9501
- seven
9502
- study
9503
- lonzo
9504
- evolution
9505
- ##kk
9506
- gs
9507
- kd
9508
- arduino
9509
- b12
9510
- ##lux
9511
- arpg
9512
- ##rdon
9513
- cook
9514
- ##x5
9515
- dark
9516
- five
9517
- ##als
9518
- ##ida
9519
- sign
9520
- something
9521
- ##nda
9522
- ##posted
9523
- fresh
9524
- tf
9525
- cam
9526
- ##mine
9527
- ##skip
9528
- ##form
9529
- ##ssion
9530
- education
9531
- ##tee
9532
- dyson
9533
- stage
9534
- ##jie
9535
- want
9536
- ##night
9537
- epson
9538
- pack
9539
- ##ppy
9540
- ##█
9541
- wd
9542
- ##eh
9543
- ##rence
9544
- left
9545
- ##lvin
9546
- golden
9547
- mhz
9548
- discovery
9549
- ##trix
9550
- ##n2
9551
- loft
9552
- ##uch
9553
- ##dra
9554
- ##sse
9555
- speed
9556
- sorry
9557
- welcome
9558
- ##urn
9559
- wave
9560
- gaga
9561
- ##lmer
9562
- teddy
9563
- rp
9564
- ##sha
9565
- rar
9566
- holiday
9567
- ##vg
9568
- ##nos
9569
- ##rail
9570
- gartner
9571
- gi
9572
- ##dium
9573
- kit
9574
- b3
9575
- eco
9576
- sean
9577
- ##stone
9578
- autocad
9579
- nu
9580
- ##np
9581
- f16
9582
- write
9583
- m5
9584
- ##ias
9585
- images
9586
- atp
9587
- ##dk
9588
- fsm
9589
- ve
9590
- ##xxx
9591
- ##cake
9592
- unit
9593
- lim
9594
- ru
9595
- ##ification
9596
- published
9597
- angela
9598
- analytics
9599
- ak
9600
- ##nel
9601
- gmt
9602
- ##icon
9603
- again
9604
- ##₂
9605
- ##bby
9606
- ios11
9607
- waze
9608
- ##ust
9609
- framework
9610
- iptv
9611
- delete
9612
- cl
9613
- wwdc
9614
- ##fw
9615
- ##xon
9616
- brandt
9617
- ##ses
9618
- ##dragon
9619
- tc
9620
- vetements
9621
- anne
9622
- monte
9623
- modern
9624
- official
9625
- ##ere
9626
- ##nne
9627
- ##oud
9628
- etnews
9629
- ##a2
9630
- ##graphy
9631
- ##rtex
9632
- l2
9633
- ##gma
9634
- mount
9635
- ccd
9636
- archive
9637
- morning
9638
- tan
9639
- ddos
9640
- e7
9641
- day4
9642
- gis
9643
- its
9644
- factory
9645
- bruce
9646
- pg
9647
- ##ito
9648
- guest
9649
- cdma
9650
- ##lling
9651
- n3
9652
- mega
9653
- eyes
9654
- ro
9655
- women
9656
- dac
9657
- church
9658
- ##jun
9659
- singapore
9660
- ##facebook
9661
- starbucks
9662
- ##tos
9663
- ##stin
9664
- ##shine
9665
- zen
9666
- ##mu
9667
- tina
9668
- request
9669
- ##gence
9670
- qt
9671
- q7
9672
- ##zzi
9673
- diary
9674
- ##tore
9675
- ##ead
9676
- cst
9677
- ##osa
9678
- canada
9679
- agent
9680
- va
9681
- ##jiang
9682
- ##lam
9683
- sg
9684
- ##nix
9685
- ##sday
9686
- g6
9687
- ##master
9688
- bing
9689
- ##zl
9690
- charlie
9691
- nb40
9692
- thai
9693
- ln284ct
9694
- ##itz
9695
- bonnie
9696
- ##food
9697
- ##lent
9698
- originals
9699
- ##stro
9700
- ##lts
9701
- ##bscribe
9702
- children
9703
- ntd
9704
- yesstyle
9705
- hmv
9706
- ##tment
9707
- d5
9708
- arts
9709
- sms
9710
- ##pn
9711
- topios9
9712
- lifestyle
9713
- virtual
9714
- ##ague
9715
- xz
9716
- ##deo
9717
- muji
9718
- unt
9719
- ##nnis
9720
- faq1
9721
- ##ette
9722
- fly
9723
- curry
9724
- ##pop
9725
- release
9726
- ##cast
9727
- ##ews
9728
- ##stle
9729
- ios7
9730
- ##ima
9731
- dog
9732
- lenovo
9733
- ##r4
9734
- roger
9735
- cbs
9736
- vornado
9737
- ##desk
9738
- ##ald
9739
- ##van
9740
- oil
9741
- some
9742
- break
9743
- common
9744
- ##jy
9745
- ##lines
9746
- g7
9747
- twice
9748
- ella
9749
- nano
9750
- belle
9751
- ##mes
9752
- ##self
9753
- ##note
9754
- jb
9755
- benz
9756
- ##ova
9757
- save
9758
- ##wing
9759
- kai
9760
- ##hua
9761
- ##rect
9762
- rainer
9763
- ##unge
9764
- adsl
9765
- guestname
9766
- ##uma
9767
- ##kins
9768
- ##zu
9769
- tokichoi
9770
- ##price
9771
- county
9772
- ##med
9773
- ##mus
9774
- rmk
9775
- address
9776
- vm
9777
- openload
9778
- ##group
9779
- ##hin
9780
- ##iginal
9781
- amg
9782
- urban
9783
- ##oz
9784
- jobs
9785
- emi
9786
- ##public
9787
- beautiful
9788
- ##sch
9789
- album
9790
- ##dden
9791
- ##bell
9792
- jerry
9793
- works
9794
- hostel
9795
- miller
9796
- ##drive
9797
- ##rmin
9798
- boot
9799
- ##fx
9800
- ##nome
9801
- ##ctionary
9802
- ##oman
9803
- ##lish
9804
- ##cr
9805
- ##hm
9806
- ##how
9807
- francis
9808
- xi
9809
- c919
9810
- b5
9811
- evernote
9812
- ##uc
9813
- vga
9814
- coupe
9815
- ##urg
9816
- ##cca
9817
- ##uality
9818
- multi
9819
- ##ett
9820
- em
9821
- hey
9822
- ##ani
9823
- ##tax
9824
- ##rma
9825
- inside
9826
- than
9827
- leonnhurt
9828
- ##jin
9829
- ict
9830
- bird
9831
- notes
9832
- ##dical
9833
- ##lli
9834
- result
9835
- iu
9836
- ee
9837
- smap
9838
- gopro
9839
- ##last
9840
- yin
9841
- pure
9842
- ##dan
9843
- ##rame
9844
- mama
9845
- ##oot
9846
- bean
9847
- marketing
9848
- ##hur
9849
- bella
9850
- sync
9851
- xuite
9852
- ##ground
9853
- discuz
9854
- ##getrelax
9855
- ##ince
9856
- ##bay
9857
- cj
9858
- gmat
9859
- apt
9860
- ##pass
9861
- jing
9862
- ##rix
9863
- c4
9864
- rich
9865
- niusnews
9866
- ##ello
9867
- bag
9868
- ##eting
9869
- ##mobile
9870
- culture
9871
- area
9872
- ##ience
9873
- details
9874
- gp
9875
- universal
9876
- silver
9877
- dit
9878
- private
9879
- ddd
9880
- u11
9881
- kanshu
9882
- ##ified
9883
- fung
9884
- ##nny
9885
- dx
9886
- tai
9887
- ##fr
9888
- ##lean
9889
- ##pin
9890
- ##rin
9891
- ly
9892
- rick
9893
- ##bility
9894
- usb3
9895
- banner
9896
- ##baru
9897
- ##gion
9898
- metal
9899
- dt
9900
- vdf
9901
- karl
9902
- qualcomm
9903
- bear
9904
- oldid
9905
- ian
9906
- jo
9907
- ##tors
9908
- population
9909
- ##ernel
9910
- mmorpg
9911
- ##mv
9912
- ##bike
9913
- ww
9914
- friend
9915
- ##ager
9916
- exhibition
9917
- ##del
9918
- ##pods
9919
- fpx
9920
- structure
9921
- ##free
9922
- ##tings
9923
- kl
9924
- ##rley
9925
- ##copyright
9926
- ##mma
9927
- california
9928
- orange
9929
- yoga
9930
- canmake
9931
- honey
9932
- ##anda
9933
- nikkie
9934
- dhl
9935
- publishing
9936
- ##mall
9937
- ##gnet
9938
- ##┅
9939
- e88
9940
- ##dog
9941
- fishbase
9942
- ##!
9943
- ##"
9944
- ###
9945
- ##$
9946
- ##%
9947
- ##&
9948
- ##'
9949
- ##(
9950
- ##)
9951
- ##*
9952
- ##+
9953
- ##,
9954
- ##-
9955
- ##.
9956
- ##/
9957
- ##:
9958
- ##;
9959
- ##<
9960
- ##=
9961
- ##>
9962
- ##?
9963
- ##@
9964
- ##[
9965
- ##\
9966
- ##]
9967
- ##^
9968
- ##_
9969
- ##{
9970
- ##|
9971
- ##}
9972
- ##~
9973
- ##£
9974
- ##¤
9975
- ##¥
9976
- ##§
9977
- ##«
9978
- ##±
9979
- ##³
9980
- ##µ
9981
- ##·
9982
- ##¹
9983
- ##º
9984
- ##»
9985
- ##¼
9986
- ##ß
9987
- ##æ
9988
- ##÷
9989
- ##ø
9990
- ##đ
9991
- ##ŋ
9992
- ##ɔ
9993
- ##ə
9994
- ##ɡ
9995
- ##ʰ
9996
- ##ˇ
9997
- ##ˈ
9998
- ##ˊ
9999
- ##ˋ
10000
- ##ˍ
10001
- ##ː
10002
- ##˙
10003
- ##˚
10004
- ##ˢ
10005
- ##α
10006
- ##β
10007
- ##γ
10008
- ##δ
10009
- ##ε
10010
- ##η
10011
- ##θ
10012
- ##ι
10013
- ##κ
10014
- ##λ
10015
- ##μ
10016
- ##ν
10017
- ##ο
10018
- ##��
10019
- ##ρ
10020
- ##ς
10021
- ##σ
10022
- ##τ
10023
- ##υ
10024
- ##φ
10025
- ##χ
10026
- ##ψ
10027
- ##б
10028
- ##в
10029
- ##г
10030
- ##д
10031
- ##е
10032
- ##ж
10033
- ##з
10034
- ##к
10035
- ##л
10036
- ##м
10037
- ##н
10038
- ##о
10039
- ##п
10040
- ##р
10041
- ##с
10042
- ##т
10043
- ##у
10044
- ##ф
10045
- ##х
10046
- ##ц
10047
- ##ч
10048
- ##ш
10049
- ##ы
10050
- ##ь
10051
- ##і
10052
- ##ก
10053
- ##ง
10054
- ##น
10055
- ##ม
10056
- ##ย
10057
- ##ร
10058
- ##อ
10059
- ##า
10060
- ##เ
10061
- ##๑
10062
- ##་
10063
- ##ღ
10064
- ##ᵃ
10065
- ##ᵉ
10066
- ##ᵍ
10067
- ##ᵏ
10068
- ##ᵐ
10069
- ##ᵒ
10070
- ##ᵘ
10071
- ##‖
10072
- ##„
10073
- ##†
10074
- ##•
10075
- ##‥
10076
- ##‧
10077
- ##
10078
- ##‰
10079
- ##′
10080
- ##″
10081
- ##‹
10082
- ##›
10083
- ##※
10084
- ##‿
10085
- ##⁄
10086
- ##ⁱ
10087
- ##⁺
10088
- ##ⁿ
10089
- ##₁
10090
- ##₃
10091
- ##₄
10092
- ##€
10093
- ##№
10094
- ##ⅰ
10095
- ##ⅱ
10096
- ##ⅲ
10097
- ##ⅳ
10098
- ##ⅴ
10099
- ##⇒
10100
- ##∀
10101
- ##−
10102
- ##∕
10103
- ##∙
10104
- ##√
10105
- ##∞
10106
- ##∟
10107
- ##∠
10108
- ##∣
10109
- ##∩
10110
- ##∮
10111
- ##∶
10112
- ##∼
10113
- ##∽
10114
- ##≈
10115
- ##≒
10116
- ##≡
10117
- ##≤
10118
- ##≥
10119
- ##≦
10120
- ##≧
10121
- ##≪
10122
- ##≫
10123
- ##⊙
10124
- ##⋅
10125
- ##⋈
10126
- ##⋯
10127
- ##⌒
10128
- ##①
10129
- ##②
10130
- ##③
10131
- ##④
10132
- ##⑤
10133
- ##⑥
10134
- ##⑦
10135
- ##⑧
10136
- ##⑨
10137
- ##⑩
10138
- ##⑴
10139
- ##⑵
10140
- ##⑶
10141
- ##⑷
10142
- ##⑸
10143
- ##⒈
10144
- ##⒉
10145
- ##⒊
10146
- ##⒋
10147
- ##ⓒ
10148
- ##ⓔ
10149
- ##ⓘ
10150
- ##━
10151
- ##┃
10152
- ##┆
10153
- ##┊
10154
- ##┌
10155
- ##└
10156
- ##├
10157
- ##┣
10158
- ##═
10159
- ##║
10160
- ##╚
10161
- ##╞
10162
- ##╠
10163
- ##╭
10164
- ##╮
10165
- ##╯
10166
- ##╰
10167
- ##╱
10168
- ##╳
10169
- ##▂
10170
- ##▃
10171
- ##▅
10172
- ##▇
10173
- ##▉
10174
- ##▋
10175
- ##▌
10176
- ##▍
10177
- ##▎
10178
- ##□
10179
- ##▬
10180
- ##△
10181
- ##►
10182
- ##▽
10183
- ##◇
10184
- ##◕
10185
- ##◠
10186
- ##◢
10187
- ##◤
10188
- ##☞
10189
- ##☼
10190
- ##♡
10191
- ##♫
10192
- ##♬
10193
- ##✕
10194
- ##✦
10195
- ##✪
10196
- ##✰
10197
- ##✿
10198
- ##❀
10199
- ##➜
10200
- ##➤
10201
- ##⦿
10202
- ##、
10203
- ##。
10204
- ##〃
10205
- ##々
10206
- ##〇
10207
- ##〈
10208
- ##〉
10209
- ##《
10210
- ##》
10211
- ##「
10212
- ##」
10213
- ##『
10214
- ##』
10215
- ##【
10216
- ##】
10217
- ##〓
10218
- ##〔
10219
- ##〕
10220
- ##〖
10221
- ##〗
10222
- ##〜
10223
- ##〝
10224
- ##〞
10225
- ##ㄧ
10226
- ##ㆍ
10227
- ##㈦
10228
- ##㊣
10229
- ##㗎
10230
- ##︰
10231
- ##︱
10232
- ##︶
10233
- ##︿
10234
- ##﹁
10235
- ##﹂
10236
- ##﹍
10237
- ##﹏
10238
- ##﹐
10239
- ##﹑
10240
- ##﹒
10241
- ##﹔
10242
- ##﹕
10243
- ##﹖
10244
- ##﹗
10245
- ##﹙
10246
- ##﹚
10247
- ##﹝
10248
- ##﹞
10249
- ##﹡
10250
- ##﹣
10251
- ##!
10252
- ##(
10253
- ##)
10254
- ##,
10255
- ##:
10256
- ##;
10257
- ##?
10258
- ##。
10259
- ##「
10260
- ##」
10261
- ##、
10262
- ##・
10263
- ##ッ
10264
- ##ー
10265
- ##゙
10266
- ##゚
10267
- ## ̄
10268
- ##¥
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
utils/zh_util.py CHANGED
@@ -1,15 +1,17 @@
1
  """
2
- TODO: 繁体、简体
3
  """
4
  import os
5
  import json
6
  from collections import Counter
7
- from utils.text_util import is_chinese, has_chinese
8
  from zhon.hanzi import punctuation as zh_punc
9
 
10
  CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
11
 
12
- zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if is_chinese(line.strip())]
 
 
13
 
14
  def zh_iterator():
15
  for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
@@ -17,6 +19,9 @@ def zh_iterator():
17
 
18
 
19
  def get_coding_length(tokenizer, vocab, filter=None):
 
 
 
20
  all_length = []
21
  for word in vocab:
22
  if len(word) > 1:
@@ -34,41 +39,82 @@ def get_coding_length(tokenizer, vocab, filter=None):
34
  return dist_length, mean_length
35
 
36
 
37
- def has_zh_char(text):
 
 
 
38
  return any(ch in zh_punc for ch in text)
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  cache = {}
41
 
 
42
  def iter_vocab(tokenizer, name="", from_cache=True):
43
  if from_cache and name in cache:
44
  return cache[name]
45
 
46
  f_out = open(name + "_vocab.zh.jsonl", "w", encoding="utf-8")
47
  zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
 
 
 
 
 
48
  all_single_zh_tokens = set()
49
  zh_symbol_count = 0
50
- for idx in range(tokenizer.vocab_size):
51
- decode_str = tokenizer.decode([idx])
52
- if has_chinese(decode_str):
53
- # bert词典有 ##开头的
54
- # byteBPE词典有带空格的
55
- decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56
  zh_token_count["total"] += 1
57
- if len(decode_str) > 1:
58
  zh_token_count["中文多字"] += 1
59
- f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文多字"},
60
- ensure_ascii=False) + "\n")
61
  else:
62
- all_single_zh_tokens.add(decode_str)
63
  zh_token_count["中文单字"] += 1
64
- f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文单字"},
65
- ensure_ascii=False) + "\n")
66
-
67
- elif has_zh_char(decode_str):
68
- zh_symbol_count += 1
69
- f_out.write(json.dumps({"id": idx, "token": decode_str, "type": "中文标点"},
70
- ensure_ascii=False) + "\n")
71
-
72
  #
73
 
74
  dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_chinese(k))
@@ -94,5 +140,9 @@ if __name__ == "__main__":
94
  # test_coding_length(zh_punc)
95
  # test_coding_length(zh_iterator())
96
 
97
- from vocab.gpt_35_turbo import tokenizer
98
- iter_vocab(tokenizer)
 
 
 
 
 
1
  """
2
+ TODO: 繁体、简体、语种、
3
  """
4
  import os
5
  import json
6
  from collections import Counter
7
+ from utils.text_util import is_chinese, get_zh_count, get_digit_count
8
  from zhon.hanzi import punctuation as zh_punc
9
 
10
  CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
11
 
12
+ zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
13
+ is_chinese(line.strip())]
14
+
15
 
16
  def zh_iterator():
17
  for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
 
19
 
20
 
21
  def get_coding_length(tokenizer, vocab, filter=None):
22
+ """
23
+ 计算编码长度。(有些中文汉字被解码成多个token)
24
+ """
25
  all_length = []
26
  for word in vocab:
27
  if len(word) > 1:
 
39
  return dist_length, mean_length
40
 
41
 
42
+ def has_zh_punc(text):
43
+ """
44
+ 是否包含中文标点
45
+ """
46
  return any(ch in zh_punc for ch in text)
47
 
48
+
49
+
50
+ def get_space_count(text):
51
+ space_count = 0
52
+ for char in text:
53
+ if len(char.strip()) == 0:
54
+ space_count += 1
55
+ return space_count
56
+
57
+
58
+ def remove_special_char():
59
+ """
60
+ :return:
61
+ """
62
+ # bert词典有 ##开头的
63
+ # byteBPE词典有带空格的
64
+ # decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
65
+ pass
66
+
67
+
68
  cache = {}
69
 
70
+
71
  def iter_vocab(tokenizer, name="", from_cache=True):
72
  if from_cache and name in cache:
73
  return cache[name]
74
 
75
  f_out = open(name + "_vocab.zh.jsonl", "w", encoding="utf-8")
76
  zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
77
+
78
+ # zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
79
+
80
+ # symbol_count = 0
81
+
82
  all_single_zh_tokens = set()
83
  zh_symbol_count = 0
84
+ for token_id in range(tokenizer.vocab_size):
85
+ decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
86
+ token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
87
+ # tokenizer.convert_tokens_to_string(tokens)
88
+
89
+ if token is None: # 有些词典有空的id(不连续)
90
+ continue
91
+ if isinstance(token, bytes):
92
+ token = token.decode("utf-8", errors="ignore")
93
+
94
+ digit_count = get_digit_count(token)
95
+ zh_count = get_zh_count(decode_str)
96
+ space_count = get_space_count(decode_str)
97
+
98
+ f_out.write(json.dumps(
99
+ {"id": token_id,
100
+ "token": token,
101
+ "token_decode": decode_str,
102
+ "token_len": len(token),
103
+ "zh_count": zh_count,
104
+ "space_count": space_count,
105
+ "digit_count": digit_count,
106
+ "zh_symbol_count": zh_symbol_count,
107
+ },
108
+ ensure_ascii=False) + "\n"
109
+ )
110
+
111
+ if zh_count >= 1:
112
  zh_token_count["total"] += 1
113
+ if zh_count > 1:
114
  zh_token_count["中文多字"] += 1
 
 
115
  else:
 
116
  zh_token_count["中文单字"] += 1
117
+ all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
 
 
 
 
 
 
 
118
  #
119
 
120
  dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_chinese(k))
 
140
  # test_coding_length(zh_punc)
141
  # test_coding_length(zh_iterator())
142
 
143
+ from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
144
+ # from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
145
+ # from vocab.baichuan2 import tokenizer; name="baichuan2"
146
+ # from vocab.gpt_4 import tokenizer; name="gpt4"
147
+
148
+ print(iter_vocab(tokenizer, name=name))
vocab/README.md CHANGED
@@ -1,4 +1,7 @@
1
 
 
 
 
2
  ## 词典构建
3
 
4
  bert词典
 
1
 
2
+ 对于OpenAI的模型而言,英文的Token效率是中文的8-12倍,
3
+ 之前三百字中文以上时Turbo 3.5 16k就会出现逻辑颠倒问题,提示词换成英文后该问题没有出现过。
4
+
5
  ## 词典构建
6
 
7
  bert词典
vocab/__init__.py CHANGED
@@ -4,8 +4,10 @@ from enum import Enum, auto
4
  """Interface:
5
  tokenizer.encode
6
  tokenizer.decode
 
7
  tokenizer.convert_ids_to_tokens
8
 
 
9
  tokenizer.parent = ""
10
  tokenizer.vocab_size
11
  tokenizer.get_vocab() # gpt-neox-20b, llama
@@ -21,8 +23,9 @@ tokenizer.implementation = TokenizerImpl.SentencePiece.name # https://github.c
21
  - sentencepiece:
22
  - 特征:.sp_model 是SentencePieceProcessor类型,sp_model.id_to_piece,有tokenizer.json tokenizer.model,词典字符有 ▁,
23
  - 示例:llama,baichuan
 
 
24
  - tiktoken
25
- - icetk
26
  - hf_tokenizer
27
  - 特征:
28
  - .model 是 tokenizer.models.BPE 类型
@@ -32,7 +35,7 @@ tokenizer.implementation = TokenizerImpl.SentencePiece.name # https://github.c
32
  - 示例:gpt_neox_20b, moss, bloom
33
  - tiktoken
34
  - 特征:空格就是空格,
35
- - 示例:gpt3.5 gpt4
36
  tokenizer.comments = "split all numbers into individual digits, " \
37
  "and fallback to bytes to decompose unknown UTF-8 characters"
38
 
@@ -50,14 +53,19 @@ uniq_tokenizers = [
50
  ]
51
 
52
  all_tokenizers = [
53
- "gpt_35_turbo",
54
- "gpt_4",
55
  "gpt2",
56
  "gpt2_chinese",
 
 
 
 
57
  "bert_base_cased",
58
  "bert_base_uncased",
59
  "bert_base_chinese",
 
60
  "kplug",
 
 
61
  "moss",
62
  #
63
  # ######
@@ -76,9 +84,11 @@ all_tokenizers = [
76
  "glm_chinese",
77
  "chatglm_6b",
78
  "chatglm2_6b",
 
79
  #
80
  # #### llama alpaca系列
81
  "llama", # '中文单字': 700, '中文多字': 0
 
82
  "chinese_llama", #
83
  "chinese_llama2", #
84
  # "chinese_alpaca_lora_7b", # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。
@@ -90,6 +100,15 @@ all_tokenizers = [
90
  "internlm_chat_7b",
91
  "falcon_180b",
92
  # "goat",
 
 
 
 
 
 
 
 
 
93
  ]
94
 
95
  class TokenizerType(Enum):
 
4
  """Interface:
5
  tokenizer.encode
6
  tokenizer.decode
7
+ tokenizer.convert_tokens_to_string # gpt4 没有这个方法
8
  tokenizer.convert_ids_to_tokens
9
 
10
+
11
  tokenizer.parent = ""
12
  tokenizer.vocab_size
13
  tokenizer.get_vocab() # gpt-neox-20b, llama
 
23
  - sentencepiece:
24
  - 特征:.sp_model 是SentencePieceProcessor类型,sp_model.id_to_piece,有tokenizer.json tokenizer.model,词典字符有 ▁,
25
  - 示例:llama,baichuan
26
+ - icetk: sentencepiece的分支,支持image_tokenizer
27
+ - glm, chatglm1, chatglm2
28
  - tiktoken
 
29
  - hf_tokenizer
30
  - 特征:
31
  - .model 是 tokenizer.models.BPE 类型
 
35
  - 示例:gpt_neox_20b, moss, bloom
36
  - tiktoken
37
  - 特征:空格就是空格,
38
+ - 示例:gpt3.5 gpt4, qwen,
39
  tokenizer.comments = "split all numbers into individual digits, " \
40
  "and fallback to bytes to decompose unknown UTF-8 characters"
41
 
 
53
  ]
54
 
55
  all_tokenizers = [
 
 
56
  "gpt2",
57
  "gpt2_chinese",
58
+ "gpt_35_turbo",
59
+ "gpt_4",
60
+
61
+ # bert 系列
62
  "bert_base_cased",
63
  "bert_base_uncased",
64
  "bert_base_chinese",
65
+ "roberta_chinese_clue",
66
  "kplug",
67
+
68
+ # gpt2 系列
69
  "moss",
70
  #
71
  # ######
 
84
  "glm_chinese",
85
  "chatglm_6b",
86
  "chatglm2_6b",
87
+ "chatglm3_6b",
88
  #
89
  # #### llama alpaca系列
90
  "llama", # '中文单字': 700, '中文多字': 0
91
+ "llama2",
92
  "chinese_llama", #
93
  "chinese_llama2", #
94
  # "chinese_alpaca_lora_7b", # 中文Alpaca模型在上述中文LLaMA模型的基础上进一步使用了指令数据进行精调。
 
100
  "internlm_chat_7b",
101
  "falcon_180b",
102
  # "goat",
103
+
104
+ # tiktoken 系列
105
+ "qwen_7b_chat",
106
+ "qwen_72b_chat",
107
+
108
+ # 未分类
109
+
110
+ "mistral",
111
+
112
  ]
113
 
114
  class TokenizerType(Enum):
vocab/baichuan/Baichuan-7B/tokenization_baichuan.py CHANGED
@@ -71,6 +71,11 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
71
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
 
 
 
 
 
74
  super().__init__(
75
  bos_token=bos_token,
76
  eos_token=eos_token,
@@ -82,11 +87,6 @@ class BaiChuanTokenizer(PreTrainedTokenizer):
82
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
83
  **kwargs,
84
  )
85
- self.vocab_file = vocab_file
86
- self.add_bos_token = add_bos_token
87
- self.add_eos_token = add_eos_token
88
- self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
89
- self.sp_model.Load(vocab_file)
90
 
91
  def __getstate__(self):
92
  state = self.__dict__.copy()
 
71
  eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
72
  unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
73
  pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
74
+ self.vocab_file = vocab_file
75
+ self.add_bos_token = add_bos_token
76
+ self.add_eos_token = add_eos_token
77
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
78
+ self.sp_model.Load(vocab_file)
79
  super().__init__(
80
  bos_token=bos_token,
81
  eos_token=eos_token,
 
87
  clean_up_tokenization_spaces=clean_up_tokenization_spaces,
88
  **kwargs,
89
  )
 
 
 
 
 
90
 
91
  def __getstate__(self):
92
  state = self.__dict__.copy()
vocab/baichuan/__init__.py CHANGED
@@ -1,7 +1,15 @@
 
 
1
  from transformers import AutoTokenizer
2
  from vocab import TokenizerType
3
 
4
- tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-7B", trust_remote_code=True)
 
 
 
 
 
 
5
 
6
 
7
  # byte-bpe sentencepiece
 
1
+ import os
2
+ import config
3
  from transformers import AutoTokenizer
4
  from vocab import TokenizerType
5
 
6
+
7
+ if config.USE_REMOTE:
8
+ tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan-7B", trust_remote_code=True)
9
+ else:
10
+ CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
11
+ TOKENIZER_DIR = os.path.join(CURRENT_DIR, "Baichuan-7B")
12
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
13
 
14
 
15
  # byte-bpe sentencepiece
vocab/baichuan/demo.py CHANGED
@@ -1,3 +1,6 @@
1
 
2
- from vocab.baichuan_7b import tokenizer
 
 
 
3
 
 
1
 
2
+ from vocab.baichuan import tokenizer
3
+
4
+ id1 = tokenizer.encode("<pad>")
5
+ token1 = tokenizer.decode(125696)
6
 
vocab/baichuan/error.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ## AttributeError: 'BaichuanTokenizer' object has no attribute 'sp_model'
4
+
5
+ https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/discussions/18
6
+
7
+
8
+ transfomers 4.34 doesn't work for me either. Degrading to 4.33.1 works in my case
vocab/baichuan2/Baichuan2-7B-Chat/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<unk>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
vocab/baichuan2/Baichuan2-7B-Chat/tokenization_baichuan.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 Baichuan Inc. All Rights Reserved.
2
+
3
+ # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
6
+ # and OPT implementations in this library. It has been modified from its
7
+ # original forms to accommodate minor architectural differences compared
8
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
9
+ #
10
+ # Licensed under the Apache License, Version 2.0 (the "License");
11
+ # you may not use this file except in compliance with the License.
12
+ # You may obtain a copy of the License at
13
+ #
14
+ # http://www.apache.org/licenses/LICENSE-2.0
15
+ #
16
+ # Unless required by applicable law or agreed to in writing, software
17
+ # distributed under the License is distributed on an "AS IS" BASIS,
18
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
19
+ # See the License for the specific language governing permissions and
20
+ # limitations under the License.
21
+
22
+ import os
23
+ from shutil import copyfile
24
+ from typing import Any, Dict, List, Optional, Tuple
25
+
26
+ import sentencepiece as spm
27
+
28
+ from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
29
+ from transformers.utils import logging
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
35
+
36
+ PRETRAINED_VOCAB_FILES_MAP = {
37
+ "vocab_file": {},
38
+ "tokenizer_file": {},
39
+ }
40
+ PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}
41
+
42
+
43
+ class BaichuanTokenizer(PreTrainedTokenizer):
44
+ """
45
+ Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.
46
+
47
+ Args:
48
+ vocab_file (`str`):
49
+ Path to the vocabulary file.
50
+ """
51
+
52
+ vocab_files_names = VOCAB_FILES_NAMES
53
+ pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
54
+ max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
55
+ model_input_names = ["input_ids", "attention_mask"]
56
+
57
+ def __init__(
58
+ self,
59
+ vocab_file,
60
+ unk_token="<unk>",
61
+ bos_token="<s>",
62
+ eos_token="</s>",
63
+ pad_token=None,
64
+ sp_model_kwargs: Optional[Dict[str, Any]] = None,
65
+ add_bos_token=True,
66
+ add_eos_token=False,
67
+ clean_up_tokenization_spaces=False,
68
+ **kwargs,
69
+ ):
70
+ self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
71
+ bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
72
+ eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
73
+ unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
74
+ pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
75
+ self.vocab_file = vocab_file
76
+ self.add_bos_token = add_bos_token
77
+ self.add_eos_token = add_eos_token
78
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
79
+ self.sp_model.Load(vocab_file)
80
+ super().__init__(
81
+ bos_token=bos_token,
82
+ eos_token=eos_token,
83
+ unk_token=unk_token,
84
+ pad_token=pad_token,
85
+ add_bos_token=add_bos_token,
86
+ add_eos_token=add_eos_token,
87
+ sp_model_kwargs=self.sp_model_kwargs,
88
+ clean_up_tokenization_spaces=clean_up_tokenization_spaces,
89
+ **kwargs,
90
+ )
91
+
92
+ def __getstate__(self):
93
+ state = self.__dict__.copy()
94
+ state["sp_model"] = None
95
+ return state
96
+
97
+ def __setstate__(self, d):
98
+ self.__dict__ = d
99
+ self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
100
+ self.sp_model.Load(self.vocab_file)
101
+
102
+ @property
103
+ def vocab_size(self):
104
+ """Returns vocab size"""
105
+ return self.sp_model.get_piece_size()
106
+
107
+ def get_vocab(self):
108
+ """Returns vocab as a dict"""
109
+ vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
110
+ vocab.update(self.added_tokens_encoder)
111
+ return vocab
112
+
113
+ def _tokenize(self, text):
114
+ """Returns a tokenized string."""
115
+ return self.sp_model.encode(text, out_type=str)
116
+
117
+ def _convert_token_to_id(self, token):
118
+ """Converts a token (str) in an id using the vocab."""
119
+ return self.sp_model.piece_to_id(token)
120
+
121
+ def _convert_id_to_token(self, index):
122
+ """Converts an index (integer) in a token (str) using the vocab."""
123
+ token = self.sp_model.IdToPiece(index)
124
+ return token
125
+
126
+ def convert_tokens_to_string(self, tokens):
127
+ """Converts a sequence of tokens (string) in a single string."""
128
+ current_sub_tokens = []
129
+ out_string = ""
130
+ prev_is_special = False
131
+ for i, token in enumerate(tokens):
132
+ # make sure that special tokens are not decoded using sentencepiece model
133
+ if token in self.all_special_tokens:
134
+ if not prev_is_special and i != 0:
135
+ out_string += " "
136
+ out_string += self.sp_model.decode(current_sub_tokens) + token
137
+ prev_is_special = True
138
+ current_sub_tokens = []
139
+ else:
140
+ current_sub_tokens.append(token)
141
+ prev_is_special = False
142
+ out_string += self.sp_model.decode(current_sub_tokens)
143
+ return out_string
144
+
145
+ def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
146
+ """
147
+ Save the vocabulary and special tokens file to a directory.
148
+
149
+ Args:
150
+ save_directory (`str`):
151
+ The directory in which to save the vocabulary.
152
+
153
+ Returns:
154
+ `Tuple(str)`: Paths to the files saved.
155
+ """
156
+ if not os.path.isdir(save_directory):
157
+ logger.error(f"Vocabulary path ({save_directory}) should be a directory")
158
+ return
159
+ out_vocab_file = os.path.join(
160
+ save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
161
+ )
162
+
163
+ if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
164
+ copyfile(self.vocab_file, out_vocab_file)
165
+ elif not os.path.isfile(self.vocab_file):
166
+ with open(out_vocab_file, "wb") as fi:
167
+ content_spiece_model = self.sp_model.serialized_model_proto()
168
+ fi.write(content_spiece_model)
169
+
170
+ return (out_vocab_file,)
171
+
172
+ def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
173
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
174
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
175
+
176
+ output = bos_token_id + token_ids_0 + eos_token_id
177
+
178
+ if token_ids_1 is not None:
179
+ output = output + bos_token_id + token_ids_1 + eos_token_id
180
+
181
+ return output
182
+
183
+ def get_special_tokens_mask(
184
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
185
+ ) -> List[int]:
186
+ """
187
+ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
188
+ special tokens using the tokenizer `prepare_for_model` method.
189
+
190
+ Args:
191
+ token_ids_0 (`List[int]`):
192
+ List of IDs.
193
+ token_ids_1 (`List[int]`, *optional*):
194
+ Optional second list of IDs for sequence pairs.
195
+ already_has_special_tokens (`bool`, *optional*, defaults to `False`):
196
+ Whether or not the token list is already formatted with special tokens for the model.
197
+
198
+ Returns:
199
+ `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
200
+ """
201
+ if already_has_special_tokens:
202
+ return super().get_special_tokens_mask(
203
+ token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
204
+ )
205
+
206
+ bos_token_id = [1] if self.add_bos_token else []
207
+ eos_token_id = [1] if self.add_eos_token else []
208
+
209
+ if token_ids_1 is None:
210
+ return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
211
+ return (
212
+ bos_token_id
213
+ + ([0] * len(token_ids_0))
214
+ + eos_token_id
215
+ + bos_token_id
216
+ + ([0] * len(token_ids_1))
217
+ + eos_token_id
218
+ )
219
+
220
+ def create_token_type_ids_from_sequences(
221
+ self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
222
+ ) -> List[int]:
223
+ """
224
+ Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
225
+ sequence pair mask has the following format:
226
+
227
+ ```
228
+ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
229
+ | first sequence | second sequence |
230
+ ```
231
+
232
+ if token_ids_1 is None, only returns the first portion of the mask (0s).
233
+
234
+ Args:
235
+ token_ids_0 (`List[int]`):
236
+ List of ids.
237
+ token_ids_1 (`List[int]`, *optional*):
238
+ Optional second list of IDs for sequence pairs.
239
+
240
+ Returns:
241
+ `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
242
+ """
243
+ bos_token_id = [self.bos_token_id] if self.add_bos_token else []
244
+ eos_token_id = [self.eos_token_id] if self.add_eos_token else []
245
+
246
+ output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)
247
+
248
+ if token_ids_1 is not None:
249
+ output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)
250
+
251
+ return output
vocab/baichuan2/Baichuan2-7B-Chat/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79452955be6b419a65984273a9f08af86042e1c2a75ee3ba989cbf620a133cc2
3
+ size 2001107
vocab/baichuan2/Baichuan2-7B-Chat/tokenizer_config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoTokenizer": ["tokenization_baichuan.BaichuanTokenizer", null]
4
+ },
5
+ "add_bos_token": false,
6
+ "add_eos_token": false,
7
+ "use_fast": false,
8
+ "clean_up_tokenization_spaces": false,
9
+ "eos_token": {
10
+ "__type": "AddedToken",
11
+ "content": "</s>",
12
+ "lstrip": false,
13
+ "normalized": true,
14
+ "rstrip": false,
15
+ "single_word": true
16
+ },
17
+ "model_max_length": 4096,
18
+ "sp_model_kwargs": {},
19
+ "tokenizer_class": "BaichuanTokenizer",
20
+ "pad_token": {
21
+ "__type": "AddedToken",
22
+ "content": "<unk>",
23
+ "lstrip": false,
24
+ "normalized": true,
25
+ "rstrip": false,
26
+ "single_word": true
27
+ },
28
+ "unk_token": {
29
+ "__type": "AddedToken",
30
+ "content": "<unk>",
31
+ "lstrip": false,
32
+ "normalized": true,
33
+ "rstrip": false,
34
+ "single_word": true
35
+ }
36
+ }
vocab/baichuan2/__init__.py CHANGED
@@ -1,10 +1,21 @@
 
 
1
  from transformers import AutoTokenizer
2
  from vocab import TokenizerType
3
 
4
- tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", trust_remote_code=True)
 
 
 
 
 
 
 
 
 
5
 
6
 
7
  # byte-bpe sentencepiece
8
  tokenizer.type = TokenizerType.ByteBPE
9
 
10
- tokenizer.comments = "expand the vocqbulary size from 64000 in Baichuan1 to 125696"
 
1
+ import os
2
+ import config
3
  from transformers import AutoTokenizer
4
  from vocab import TokenizerType
5
 
6
+
7
+
8
+
9
+
10
+ if config.USE_REMOTE:
11
+ tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", trust_remote_code=True)
12
+ else:
13
+ CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
14
+ TOKENIZER_DIR = os.path.join(CURRENT_DIR, "Baichuan2-7B-Chat")
15
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
16
 
17
 
18
  # byte-bpe sentencepiece
19
  tokenizer.type = TokenizerType.ByteBPE
20
 
21
+ tokenizer.comments = "expand the vocabulary size from 64000 in Baichuan1 to 125696"
vocab/baichuan2/bug.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ """
3
+ 这个 bug 已解决, https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat/commit/e03d54f05b9d42740c43a191c5d2914fcfb4c6e5
4
+ """
5
+
6
+ import os
7
+ from transformers import AutoTokenizer
8
+ from vocab import TokenizerType
9
+
10
+
11
+ CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
12
+ TOKENIZER_DIR = os.path.join(CURRENT_DIR, "Baichuan2-7B-Chat")
13
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
14
+ # tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-7B-Chat", trust_remote_code=True)
15
+
16
+ token_ids = tokenizer.encode("<pad>")
17
+ # token1 = tokenizer.decode(125696) # out of range
18
+
19
+ token_ids = tokenizer.encode("中")
20
+ filtered_tokens = tokenizer.convert_ids_to_tokens(token_ids)
21
+ decoded_text = tokenizer.convert_tokens_to_string(filtered_tokens)
22
+ print(decoded_text)
vocab/baichuan2/encode.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
4
+ from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
5
+
6
+ # sp = sp_pb2_model.ModelProto()
7
+ # # sp.ParseFromString(open("zh_corpus.unigram.model", "rb").read())
8
+ # sp.ParseFromString(open("zh_corpus.bpe.user_defined_symbols.model", "rb").read())
9
+
10
+ import sentencepiece as spm
11
+ sp = spm.SentencePieceProcessor(model_file="Baichuan2-7B-Chat/tokenizer.model")
12
+ for text in ["汉堡王", "汉", "堡", "sfds<|USER|>ss</s><Rhino>", "<reserved_87254>", "<reserved_928>"]:
13
+ result_str = sp.encode(text, out_type=str)
14
+ result_int = sp.encode(text, out_type=int)
15
+ print(result_str, result_int)
vocab/baichuan2/special_token.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os
3
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
4
+ from sentencepiece import sentencepiece_model_pb2 as sp_pb2_model
5
+ import sentencepiece as spm
6
+
7
+ baichuan_spm = sp_pb2_model.ModelProto()
8
+ baichuan_spm.ParseFromString(open("Baichuan2-7B-Chat/tokenizer.model", "rb").read())
9
+
10
+
11
+ vocab_size = len(baichuan_spm.pieces)
12
+ for i in range(vocab_size):
13
+ piece = baichuan_spm.pieces[i]
14
+ if "reser" in piece.piece:
15
+ print(i, str(piece).strip().replace("\n", ", "))
vocab/baichuan7b_chat/__init__.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ """
2
+ "vocab_size": 125696
3
+ """
4
+
5
+
vocab/build_zh_vocab.py DELETED
@@ -1,32 +0,0 @@
1
- import json
2
- from collections import defaultdict
3
-
4
- all_zh_words = defaultdict(int)
5
- for model_name in [
6
- "gpt2",
7
- "gpt2_chinese",
8
- "chinese_llama_lora_7b",
9
- "bert_chinese",
10
- "moss",
11
- "bloom",
12
- "bloomz_6b4_zh",
13
- "gpt_nexo_20b",
14
- "gpt_neox_chinese_v1",
15
- "glm_chinese",
16
- "chatglm"
17
- ]:
18
- zh_word_set = set()
19
- for line in open(model_name + "_vocab.zh.jsonl", "r", encoding="utf-8"):
20
- item = json.loads(line)
21
- token = item["token"]
22
- if item["type"] in ["中文单字", "中文多字"]:
23
- zh_word_set.add(token.strip())
24
-
25
- for word in zh_word_set:
26
- all_zh_words[word] += 1
27
-
28
- sorted_keywords = sorted(all_zh_words.items(), key=lambda kv: kv[1], reverse=True)
29
-
30
- with open("vocab.freq.zh.txt", "w", encoding="utf-8") as f_out:
31
- for word, count in sorted_keywords:
32
- f_out.write("%s\t%d\n" % (word, count))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vocab/chatglm2_6b/__init__.py CHANGED
@@ -1,2 +1,8 @@
 
 
1
  from transformers import AutoTokenizer
 
 
 
 
2
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
 
1
+
2
+ import os
3
  from transformers import AutoTokenizer
4
+
5
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
6
+
7
+
8
  tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm2-6b", trust_remote_code=True)
vocab/chatglm3_6b/__init__.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+
4
+ import os
5
+ from transformers import AutoTokenizer
6
+
7
+ os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
8
+
9
+ tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
vocab/chatglm_6b/README.md CHANGED
@@ -7,7 +7,7 @@
7
  - ice_text.model
8
  - 二进制文件
9
  - num_image_tokens = 20000
10
- 词典大小 150528
11
 
12
 
13
  ```
 
7
  - ice_text.model
8
  - 二进制文件
9
  - num_image_tokens = 20000
10
+ 文本词典大小=150528-20000
11
 
12
 
13
  ```
vocab/chatglm_6b/__init__.py CHANGED
@@ -3,15 +3,19 @@
3
  """
4
 
5
  import os
 
6
  from transformers import AutoTokenizer
7
 
8
  os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
9
 
10
- CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
11
- TOKENIZER_DIR = os.path.join(CURRENT_DIR, "tokenizer")
12
 
13
- tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
 
 
 
 
 
14
 
 
 
15
 
16
- # vocab_size = len(tokenizer.get_vocab())
17
- # vocab_size = tokenizer.vocab_size
 
3
  """
4
 
5
  import os
6
+ import config
7
  from transformers import AutoTokenizer
8
 
9
  os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
10
 
 
 
11
 
12
+ if config.USE_REMOTE:
13
+ pass
14
+ else:
15
+ CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
16
+ TOKENIZER_DIR = os.path.join(CURRENT_DIR, "chatglm_6b")
17
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_DIR, trust_remote_code=True)
18
 
19
+ # https://huggingface.co/THUDM/chatglm-6b/blob/main/tokenization_chatglm.py#L153
20
+ tokenizer.comments = f"num_image_tokens: {tokenizer.sp_tokenizer.num_image_tokens}; num_image_tokens: {tokenizer.sp_tokenizer.num_text_tokens} "
21
 
 
 
vocab/chatglm_6b/{tokenizer → chatglm_6b}/config.json RENAMED
File without changes
vocab/chatglm_6b/{tokenizer → chatglm_6b}/ice_text.model RENAMED
File without changes
vocab/chatglm_6b/{tokenizer → chatglm_6b}/tokenization_chatglm.py RENAMED
File without changes
vocab/chatglm_6b/{tokenizer → chatglm_6b}/tokenizer_config.json RENAMED
File without changes
vocab/chinese_llama2/demo.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+
2
+
3
+ from vocab.chinese_llama2 import tokenizer
4
+
5
+ encoding = tokenizer.encode("<s>开始</s>站位符<pad>试试<unk>")
6
+ print(encoding)
vocab/chinese_llama2/load_by_gpt_neox.py ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # HF_tokenizer
3
+ # from tokenizers import Tokenizer
4
+ # tokenizer = Tokenizer.from_file("tokenizer/tokenizer.json")
5
+
6
+
7
+ import sentencepiece as spm
8
+
9
+ text = "nice job 华为手机"
10
+ text = "<s>世界上最高的山是哪座山?</s><pad>" # 29871, 41334, 30528, 30210, 30329, 41894, 31780, 30329, 30882,
11
+ tokenizer = spm.SentencePieceProcessor(model_file="tokenizer/tokenizer.model")
12
+ tokens = tokenizer.encode(text) # [7575, 4982, 29871, 31266, 30573, 30880, 31429]
13
+ print(tokens)
14
+
15
+ from transformers import LlamaTokenizer
16
+ tokenizer = LlamaTokenizer.from_pretrained("tokenizer")
17
+ tokens = tokenizer.encode(text) # [1, 7575, 4982, 29871, 31266, 30573, 30880, 31429]
18
+ print(tokens)
19
+
vocab/chinese_llama2/tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<pad>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
vocab/chinese_llama2/tokenizer/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3b8844863b200dfcca971db228e96ce388290dfcf72c15d7a9d2f604bac787c
3
+ size 844403
vocab/chinese_llama2/tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 1000000000000000019884624838656,
23
+ "pad_token": null,
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ },
34
+ "use_fast": false
35
+ }
vocab/gpt_35_turbo/README.md ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+
3
+ ## token
4
+
5
+
6
+
7
+ space
8
+ ```yml
9
+ # multi-space
10
+ {"id": 881, "token": "\r\n\r\n", "token_decode": "\r\n\r\n", "token_len": 4, "zh_count": 0, "space_count": 4, "digit_count": 0, "zh_symbol_count": 0}
11
+ # space + en
12
+ {"id": 862, "token": "\treturn", "token_decode": "\treturn", "token_len": 7, "zh_count": 0, "space_count": 1, "digit_count": 0, "zh_symbol_count": 0}
13
+ # sapce + zh
14
+ {"id": 40195, "token": " 下", "token_decode": " 下", "token_len": 2, "zh_count": 1, "space_count": 1, "digit_count": 0, "zh_symbol_count": 0}
15
+ ```
16
+
17
+
18
+ special_token
19
+ ```
20
+ {"id": 100257, "token": "<|endoftext|>", "token_decode": "<|endoftext|>", "token_len": 13, "zh_count": 0, "space_count": 0, "digit_count": 0, "zh_symbol_count": 0}
21
+ {"id": 100258, "token": "<|fim_prefix|>", "token_decode": "<|fim_prefix|>", "token_len": 14, "zh_count": 0, "space_count": 0, "digit_count": 0, "zh_symbol_count": 0}
22
+ {"id": 100259, "token": "<|fim_middle|>", "token_decode": "<|fim_middle|>", "token_len": 14, "zh_count": 0, "space_count": 0, "digit_count": 0, "zh_symbol_count": 0}
23
+ {"id": 100260, "token": "<|fim_suffix|>", "token_decode": "<|fim_suffix|>", "token_len": 14, "zh_count": 0, "space_count": 0, "digit_count": 0, "zh_symbol_count": 0}
24
+ {"id": 100276, "token": "<|endofprompt|>", "token_decode": "<|endofprompt|>", "token_len": 15, "zh_count": 0, "space_count": 0, "digit_count": 0, "zh_symbol_count": 0}
25
+ ```
26
+
27
+ ## 词典文件
28
+
29
+
30
+ ```
31
+ IQ== 0
32
+ Ig== 1
33
+ Iw== 2
34
+ JA== 3
35
+ JQ== 4
36
+ Jg== 5
37
+ Jw== 6
38
+ KA== 7
39
+ ```
40
+
41
+ 这是啥玩意?
vocab/gpt_35_turbo/__init__.py CHANGED
@@ -11,16 +11,27 @@ tokenizer.comments = "tiktoken is a fast BPE tokeniser for use with OpenAI's mod
11
  tokenizer.reversible = True # It's reversible and lossless, so you can convert tokens back into the original text
12
 
13
 
14
- def decode(self, tokens, errors="replace"):
15
- # def decode(self, tokens: list[int], errors: str = "replace") -> str:
 
 
 
16
  try:
17
  decode_str = self._core_bpe.decode_bytes(tokens).decode("utf-8", errors=errors)
18
  except:
19
  decode_str = "null"
20
  return decode_str
21
 
22
- def convert_ids_to_tokens(self, tokens):
23
- return tokenizer.decode_tokens_bytes(tokens)
 
 
 
 
 
 
 
 
24
 
25
  def get_vocab(self, token_type="str"):
26
  """Returns vocab as a dict
@@ -31,13 +42,15 @@ def get_vocab(self, token_type="str"):
31
  key_error_list = []
32
  unicode_decode_error_list = []
33
  for i in range(self.vocab_size):
 
 
34
  try:
35
  token_byte = self.convert_ids_to_tokens([i])[0]
36
- token_str = token_byte.decode("utf-8")
 
 
37
  vocab[token_byte] = i
38
- except KeyError: # 16 KeyError, 100256 100261-100275
39
- key_error_list.append(i)
40
- # vocab[f"[KeyError]-{i}"] = i
41
  except UnicodeDecodeError: # 773 UnicodeDecodeError
42
  unicode_decode_error_list.append((i, str(token_byte)))
43
  vocab[token_byte] = i
 
11
  tokenizer.reversible = True # It's reversible and lossless, so you can convert tokens back into the original text
12
 
13
 
14
+ def decode(self, tokens, errors="replace", skip_special_tokens=False):
15
+ """
16
+ 默认的decode,可能会报错,详见 decode_test.py
17
+ skip_special_tokens 是为了兼容 hf_tokenizer
18
+ """
19
  try:
20
  decode_str = self._core_bpe.decode_bytes(tokens).decode("utf-8", errors=errors)
21
  except:
22
  decode_str = "null"
23
  return decode_str
24
 
25
+ def convert_ids_to_tokens(self, tokens, skip_special_tokens=False):
26
+ """
27
+ 为什么没有这个方法?
28
+ """
29
+ try:
30
+ return tokenizer.decode_tokens_bytes(tokens)
31
+ except:
32
+ # 什么要返回None?见zh_util.py
33
+ # 16个空闲id, 100256 100261-100275
34
+ return [None for token in tokens]
35
 
36
  def get_vocab(self, token_type="str"):
37
  """Returns vocab as a dict
 
42
  key_error_list = []
43
  unicode_decode_error_list = []
44
  for i in range(self.vocab_size):
45
+ if i == 100256:
46
+ print(i)
47
  try:
48
  token_byte = self.convert_ids_to_tokens([i])[0]
49
+ if token_byte is None:
50
+ continue
51
+ # token_str = token_byte.decode("utf-8")
52
  vocab[token_byte] = i
53
+
 
 
54
  except UnicodeDecodeError: # 773 UnicodeDecodeError
55
  unicode_decode_error_list.append((i, str(token_byte)))
56
  vocab[token_byte] = i
vocab/gpt_35_turbo/decode_test.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+
2
+ from vocab.gpt_35_turbo import tokenizer
3
+
4
+ print(tokenizer.decode([100256]))
5
+
6
+ print(tokenizer.convert_ids_to_tokens([100256]))
vocab/gpt_35_turbo/test_arena.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ from vocab.gpt_35_turbo import tokenizer
2
+
3
+
4
+ print(tokenizer.get_vocab())
5
+
6
+
7
+ text = "中"
8
+ token_ids = tokenizer.encode(text)
9
+ decode_str = tokenizer.convert_tokens_to_string(token_ids)
10
+ print(decode_str)
vocab/gpt_35_turbo/{test2.py → test_tiktoken.py} RENAMED
@@ -26,6 +26,7 @@ tokenizer.decode_tokens_bytes([10])
26
  tokenizer.decode_single_token_bytes(10)
27
  tokenizer.decode_bytes([10])
28
 
 
29
  f_out = open("vocab.jsonl", "w")
30
  # 100255
31
  for i in range(tokenizer.n_vocab):
 
26
  tokenizer.decode_single_token_bytes(10)
27
  tokenizer.decode_bytes([10])
28
 
29
+
30
  f_out = open("vocab.jsonl", "w")
31
  # 100255
32
  for i in range(tokenizer.n_vocab):
vocab/gpt_35_turbo/{aaa.py → tiktoken_decode_test.py} RENAMED
@@ -19,6 +19,7 @@ tokenizer = tiktoken.encoding_for_model('gpt-3.5-turbo')
19
 
20
  tokens = [100263, 99834]
21
 
 
22
  tokenizer.decode(tokens)
23
 
24
  tokenizer._core_bpe.decode_bytes(tokens).decode("utf-8", errors="replace")
 
19
 
20
  tokens = [100263, 99834]
21
 
22
+ tokenizer.decode(tokens)
23
  tokenizer.decode(tokens)
24
 
25
  tokenizer._core_bpe.decode_bytes(tokens).decode("utf-8", errors="replace")
vocab/gpt_35_turbo/vocab.jsonl CHANGED
@@ -99964,314 +99964,3 @@
99964
  {"id": 99963, "token": "\" Geg\""}
99965
  {"id": 99964, "token": "\"\\tdto\""}
99966
  {"id": 99965, "token": "\".defaultValue\""}
99967
- {"id": 99966, "token": "\" Kami\""}
99968
- {"id": 99967, "token": "\" ASE\""}
99969
- {"id": 99968, "token": "\"optimized\""}
99970
- {"id": 99969, "token": "\" \\ud3ec\""}
99971
- {"id": 99970, "token": "\" originates\""}
99972
- {"id": 99971, "token": "\"errMsg\""}
99973
- {"id": 99972, "token": "\" espa\\u00e7o\""}
99974
- {"id": 99973, "token": "\"(SYS\""}
99975
- {"id": 99974, "token": "\" McB\""}
99976
- {"id": 99975, "token": "\"dance\""}
99977
- {"id": 99976, "token": "\"_detected\""}
99978
- {"id": 99977, "token": "\" fr\\u00fc\""}
99979
- {"id": 99978, "token": "\"\\t\\t \\t\\t\""}
99980
- {"id": 99979, "token": "\"<Date\""}
99981
- {"id": 99980, "token": "\"(comb\""}
99982
- {"id": 99981, "token": "\" Decide\""}
99983
- {"id": 99982, "token": "\"\\\\Field\""}
99984
- {"id": 99983, "token": "\" Proposed\""}
99985
- {"id": 99984, "token": "\"Rib\""}
99986
- {"id": 99985, "token": "\" dislikes\""}
99987
- {"id": 99986, "token": "\" Wien\""}
99988
- {"id": 99987, "token": "\"\\tDocument\""}
99989
- {"id": 99988, "token": "\" traf\""}
99990
- {"id": 99989, "token": "\" storia\""}
99991
- {"id": 99990, "token": "\" Tells\""}
99992
- {"id": 99991, "token": "\"')==\""}
99993
- {"id": 99992, "token": "\"Cri\""}
99994
- {"id": 99993, "token": "\"(VALUE\""}
99995
- {"id": 99994, "token": "\" Burnett\""}
99996
- {"id": 99995, "token": "\",void\""}
99997
- {"id": 99996, "token": "\" danh\""}
99998
- {"id": 99997, "token": "\" ccp\""}
99999
- {"id": 99998, "token": "\"Blockchain\""}
100000
- {"id": 99999, "token": "\":\\\"-\\\"`\\n\""}
100001
- {"id": 100000, "token": "\"IClient\""}
100002
- {"id": 100001, "token": "\"ISODE\""}
100003
- {"id": 100002, "token": "\"Issuer\""}
100004
- {"id": 100003, "token": "\")}\\r\\n\""}
100005
- {"id": 100004, "token": "\",but\""}
100006
- {"id": 100005, "token": "\" Uph\""}
100007
- {"id": 100006, "token": "\"(Sub\""}
100008
- {"id": 100007, "token": "\" t\\u00e9l\\u00e9phone\""}
100009
- {"id": 100008, "token": "\" onDataChange\""}
100010
- {"id": 100009, "token": "\" marshaller\""}
100011
- {"id": 100010, "token": "\"-analytics\""}
100012
- {"id": 100011, "token": "\",content\""}
100013
- {"id": 100012, "token": "\" debacle\""}
100014
- {"id": 100013, "token": "\"_ValueChanged\""}
100015
- {"id": 100014, "token": "\" fauna\""}
100016
- {"id": 100015, "token": "\" #=>\""}
100017
- {"id": 100016, "token": "\" foyer\""}
100018
- {"id": 100017, "token": "\"'utilisation\""}
100019
- {"id": 100018, "token": "\" M\\u00fcller\""}
100020
- {"id": 100019, "token": "\" Fetish\""}
100021
- {"id": 100020, "token": "\" defaultManager\""}
100022
- {"id": 100021, "token": "\" backtrack\""}
100023
- {"id": 100022, "token": "\"Bah\""}
100024
- {"id": 100023, "token": "\"Explicit\""}
100025
- {"id": 100024, "token": "\"_ASCII\""}
100026
- {"id": 100025, "token": "\" mActivity\""}
100027
- {"id": 100026, "token": "\"(Msg\""}
100028
- {"id": 100027, "token": "\" \\uac8c\""}
100029
- {"id": 100028, "token": "\" TERMS\""}
100030
- {"id": 100029, "token": "\" Angie\""}
100031
- {"id": 100030, "token": "\"HSV\""}
100032
- {"id": 100031, "token": "\" Mosque\""}
100033
- {"id": 100032, "token": "\".Names\""}
100034
- {"id": 100033, "token": "\"\\ud2bc\""}
100035
- {"id": 100034, "token": "\"reste\""}
100036
- {"id": 100035, "token": "\"_parms\""}
100037
- {"id": 100036, "token": "\" gaping\""}
100038
- {"id": 100037, "token": "\" cropping\""}
100039
- {"id": 100038, "token": "\"DataFrame\""}
100040
- {"id": 100039, "token": "\" responsiveness\""}
100041
- {"id": 100040, "token": "\"_undo\""}
100042
- {"id": 100041, "token": "\"_tran\""}
100043
- {"id": 100042, "token": "\".terminate\""}
100044
- {"id": 100043, "token": "\" italiane\""}
100045
- {"id": 100044, "token": "\" walkthrough\""}
100046
- {"id": 100045, "token": "\" attractiveness\""}
100047
- {"id": 100046, "token": "\"\\u0434\\u0435\""}
100048
- {"id": 100047, "token": "\"_STS\""}
100049
- {"id": 100048, "token": "\"_learn\""}
100050
- {"id": 100049, "token": "\" chocolates\""}
100051
- {"id": 100050, "token": "\"ierarchical\""}
100052
- {"id": 100051, "token": "\"-thinking\""}
100053
- {"id": 100052, "token": "\" )))\""}
100054
- {"id": 100053, "token": "\"ishments\""}
100055
- {"id": 100054, "token": "\".Logf\""}
100056
- {"id": 100055, "token": "\" TMZ\""}
100057
- {"id": 100056, "token": "\" Canary\""}
100058
- {"id": 100057, "token": "\"foil\""}
100059
- {"id": 100058, "token": "\" Vaccine\""}
100060
- {"id": 100059, "token": "\".vx\""}
100061
- {"id": 100060, "token": "\" Surround\""}
100062
- {"id": 100061, "token": "\"Intermediate\""}
100063
- {"id": 100062, "token": "\" iov\""}
100064
- {"id": 100063, "token": "\"vais\""}
100065
- {"id": 100064, "token": "\"';\\\";\\n\""}
100066
- {"id": 100065, "token": "\"\\uff5e\\n\\n\""}
100067
- {"id": 100066, "token": "\"\\u9001\\u6599\""}
100068
- {"id": 100067, "token": "\"\\u2026it\""}
100069
- {"id": 100068, "token": "\"Seats\""}
100070
- {"id": 100069, "token": "\"Clar\""}
100071
- {"id": 100070, "token": "\"Wars\""}
100072
- {"id": 100071, "token": "\" Hutchinson\""}
100073
- {"id": 100072, "token": "\" Hasan\""}
100074
- {"id": 100073, "token": "\"!')\\n\\n\""}
100075
- {"id": 100074, "token": "\" Richie\""}
100076
- {"id": 100075, "token": "\"cheiden\""}
100077
- {"id": 100076, "token": "\"($('\""}
100078
- {"id": 100077, "token": "\"York\""}
100079
- {"id": 100078, "token": "\" lids\""}
100080
- {"id": 100079, "token": "\" alphanumeric\""}
100081
- {"id": 100080, "token": "\" Glock\""}
100082
- {"id": 100081, "token": "\".shapes\""}
100083
- {"id": 100082, "token": "\" sparking\""}
100084
- {"id": 100083, "token": "\"_epsilon\""}
100085
- {"id": 100084, "token": "\"uplicated\""}
100086
- {"id": 100085, "token": "\".dirty\""}
100087
- {"id": 100086, "token": "\"])==\""}
100088
- {"id": 100087, "token": "\" \\uc704\\uce58\""}
100089
- {"id": 100088, "token": "\" scn\""}
100090
- {"id": 100089, "token": "\" /****************************************************************\""}
100091
- {"id": 100090, "token": "\"_PREVIEW\""}
100092
- {"id": 100091, "token": "\"_HC\""}
100093
- {"id": 100092, "token": "\"ielding\""}
100094
- {"id": 100093, "token": "\"fgets\""}
100095
- {"id": 100094, "token": "\" Addison\""}
100096
- {"id": 100095, "token": "\" productService\""}
100097
- {"id": 100096, "token": "\"-figure\""}
100098
- {"id": 100097, "token": "\"(retval\""}
100099
- {"id": 100098, "token": "\"zano\""}
100100
- {"id": 100099, "token": "\" autob\""}
100101
- {"id": 100100, "token": "\"\\tsd\""}
100102
- {"id": 100101, "token": "\"_numer\""}
100103
- {"id": 100102, "token": "\" SetLastError\""}
100104
- {"id": 100103, "token": "\" Fior\""}
100105
- {"id": 100104, "token": "\"ificance\""}
100106
- {"id": 100105, "token": "\"Untitled\""}
100107
- {"id": 100106, "token": "\" infield\""}
100108
- {"id": 100107, "token": "\" {}));\\n\""}
100109
- {"id": 100108, "token": "\" spac\""}
100110
- {"id": 100109, "token": "\" rookies\""}
100111
- {"id": 100110, "token": "\"(describing\""}
100112
- {"id": 100111, "token": "\"ngen\""}
100113
- {"id": 100112, "token": "\"\\u0bbf\\ufffd\""}
100114
- {"id": 100113, "token": "\".rdf\""}
100115
- {"id": 100114, "token": "\".Mutex\""}
100116
- {"id": 100115, "token": "\" kneeling\""}
100117
- {"id": 100116, "token": "\" QE\""}
100118
- {"id": 100117, "token": "\"setMax\""}
100119
- {"id": 100118, "token": "\"ReadStream\""}
100120
- {"id": 100119, "token": "\" ventas\""}
100121
- {"id": 100120, "token": "\"sut\""}
100122
- {"id": 100121, "token": "\"cmpeq\""}
100123
- {"id": 100122, "token": "\".WriteAllText\""}
100124
- {"id": 100123, "token": "\" Experienced\""}
100125
- {"id": 100124, "token": "\"$__\""}
100126
- {"id": 100125, "token": "\" kaum\""}
100127
- {"id": 100126, "token": "\" LIS\""}
100128
- {"id": 100127, "token": "\" documentos\""}
100129
- {"id": 100128, "token": "\"_HEALTH\""}
100130
- {"id": 100129, "token": "\"icontains\""}
100131
- {"id": 100130, "token": "\" artisans\""}
100132
- {"id": 100131, "token": "\"OWNER\""}
100133
- {"id": 100132, "token": "\" blinked\""}
100134
- {"id": 100133, "token": "\"getDisplay\""}
100135
- {"id": 100134, "token": "\" toen\""}
100136
- {"id": 100135, "token": "\" rowNum\""}
100137
- {"id": 100136, "token": "\" avril\""}
100138
- {"id": 100137, "token": "\" invis\""}
100139
- {"id": 100138, "token": "\" Kear\""}
100140
- {"id": 100139, "token": "\"toBeInTheDocument\""}
100141
- {"id": 100140, "token": "\"apur\""}
100142
- {"id": 100141, "token": "\" racked\""}
100143
- {"id": 100142, "token": "\" McMaster\""}
100144
- {"id": 100143, "token": "\"_ATTRIB\""}
100145
- {"id": 100144, "token": "\"Haz\""}
100146
- {"id": 100145, "token": "\" factura\""}
100147
- {"id": 100146, "token": "\"/ts\""}
100148
- {"id": 100147, "token": "\" \\u0440\\u0430\\u0437\\u043c\\u0435\\u0440\""}
100149
- {"id": 100148, "token": "\" zf\""}
100150
- {"id": 100149, "token": "\" shortfall\""}
100151
- {"id": 100150, "token": "\".fasta\""}
100152
- {"id": 100151, "token": "\" CONSTANT\""}
100153
- {"id": 100152, "token": "\".managed\""}
100154
- {"id": 100153, "token": "\"gems\""}
100155
- {"id": 100154, "token": "\"SharedPointer\""}
100156
- {"id": 100155, "token": "\" blurry\""}
100157
- {"id": 100156, "token": "\"brightness\""}
100158
- {"id": 100157, "token": "\"(components\""}
100159
- {"id": 100158, "token": "\" ...\\\"\\n\\n\""}
100160
- {"id": 100159, "token": "\"SELL\""}
100161
- {"id": 100160, "token": "\" Illustrator\""}
100162
- {"id": 100161, "token": "\".getChannel\""}
100163
- {"id": 100162, "token": "\" trouv\\u00e9\""}
100164
- {"id": 100163, "token": "\"ysters\""}
100165
- {"id": 100164, "token": "\" vois\""}
100166
- {"id": 100165, "token": "\" Linden\""}
100167
- {"id": 100166, "token": "\" emojis\""}
100168
- {"id": 100167, "token": "\" brawl\""}
100169
- {"id": 100168, "token": "\" MSR\""}
100170
- {"id": 100169, "token": "\" Elo\""}
100171
- {"id": 100170, "token": "\" Croatian\""}
100172
- {"id": 100171, "token": "\"PopupMenu\""}
100173
- {"id": 100172, "token": "\"Lewis\""}
100174
- {"id": 100173, "token": "\".JWT\""}
100175
- {"id": 100174, "token": "\" astonished\""}
100176
- {"id": 100175, "token": "\"Bush\""}
100177
- {"id": 100176, "token": "\"(itemId\""}
100178
- {"id": 100177, "token": "\" detachment\""}
100179
- {"id": 100178, "token": "\" Encore\""}
100180
- {"id": 100179, "token": "\"\\u5c14\""}
100181
- {"id": 100180, "token": "\" rekl\""}
100182
- {"id": 100181, "token": "\" cram\""}
100183
- {"id": 100182, "token": "\")$/\""}
100184
- {"id": 100183, "token": "\".getHost\""}
100185
- {"id": 100184, "token": "\"_recommend\""}
100186
- {"id": 100185, "token": "\"-HT\""}
100187
- {"id": 100186, "token": "\"_calibration\""}
100188
- {"id": 100187, "token": "\"Authenticate\""}
100189
- {"id": 100188, "token": "\".firebaseapp\""}
100190
- {"id": 100189, "token": "\"UNIX\""}
100191
- {"id": 100190, "token": "\"\\tCamera\""}
100192
- {"id": 100191, "token": "\" HEAP\""}
100193
- {"id": 100192, "token": "\"Ideal\""}
100194
- {"id": 100193, "token": "\".office\""}
100195
- {"id": 100194, "token": "\" goofy\""}
100196
- {"id": 100195, "token": "\"(Symbol\""}
100197
- {"id": 100196, "token": "\" jouer\""}
100198
- {"id": 100197, "token": "\"_partitions\""}
100199
- {"id": 100198, "token": "\" rapidement\""}
100200
- {"id": 100199, "token": "\" GNUNET\""}
100201
- {"id": 100200, "token": "\"idUser\""}
100202
- {"id": 100201, "token": "\" supervise\""}
100203
- {"id": 100202, "token": "\"(Contact\""}
100204
- {"id": 100203, "token": "\"AWN\""}
100205
- {"id": 100204, "token": "\"\\u3058\""}
100206
- {"id": 100205, "token": "\" naam\""}
100207
- {"id": 100206, "token": "\" aust\""}
100208
- {"id": 100207, "token": "\"\\u5728\\u7ebf\""}
100209
- {"id": 100208, "token": "\"_softmax\""}
100210
- {"id": 100209, "token": "\"AllowAnonymous\""}
100211
- {"id": 100210, "token": "\"ammable\""}
100212
- {"id": 100211, "token": "\"ROUTE\""}
100213
- {"id": 100212, "token": "\"*D\""}
100214
- {"id": 100213, "token": "\" aden\""}
100215
- {"id": 100214, "token": "\" Cristina\""}
100216
- {"id": 100215, "token": "\" Cristiano\""}
100217
- {"id": 100216, "token": "\" bloodstream\""}
100218
- {"id": 100217, "token": "\"subclass\""}
100219
- {"id": 100218, "token": "\"_persona\""}
100220
- {"id": 100219, "token": "\"CHILD\""}
100221
- {"id": 100220, "token": "\"-know\""}
100222
- {"id": 100221, "token": "\" navigationOptions\""}
100223
- {"id": 100222, "token": "\" Zukunft\""}
100224
- {"id": 100223, "token": "\" Pixar\""}
100225
- {"id": 100224, "token": "\"Tyler\""}
100226
- {"id": 100225, "token": "\" underworld\""}
100227
- {"id": 100226, "token": "\" sincerity\""}
100228
- {"id": 100227, "token": "\" dispenser\""}
100229
- {"id": 100228, "token": "\" kter\""}
100230
- {"id": 100229, "token": "\"idders\""}
100231
- {"id": 100230, "token": "\".addNode\""}
100232
- {"id": 100231, "token": "\"-checked\""}
100233
- {"id": 100232, "token": "\" keyst\""}
100234
- {"id": 100233, "token": "\" WTO\""}
100235
- {"id": 100234, "token": "\".signals\""}
100236
- {"id": 100235, "token": "\" adventurer\""}
100237
- {"id": 100236, "token": "\" Pang\""}
100238
- {"id": 100237, "token": "\"\\\\R\""}
100239
- {"id": 100238, "token": "\"=pos\""}
100240
- {"id": 100239, "token": "\" dispensaries\""}
100241
- {"id": 100240, "token": "\" Closet\""}
100242
- {"id": 100241, "token": "\"(\\\"{\\\\\\\"\""}
100243
- {"id": 100242, "token": "\"ideon\""}
100244
- {"id": 100243, "token": "\" n\\u00e9cessaire\""}
100245
- {"id": 100244, "token": "\"()\\\"\\n\""}
100246
- {"id": 100245, "token": "\"_RECEIVED\""}
100247
- {"id": 100246, "token": "\" r\\u00e9sultats\""}
100248
- {"id": 100247, "token": "\" moden\""}
100249
- {"id": 100248, "token": "\" Icelandic\""}
100250
- {"id": 100249, "token": "\";d\""}
100251
- {"id": 100250, "token": "\".allowed\""}
100252
- {"id": 100251, "token": "\"(newUser\""}
100253
- {"id": 100252, "token": "\" merciless\""}
100254
- {"id": 100253, "token": "\".WaitFor\""}
100255
- {"id": 100254, "token": "\" daycare\""}
100256
- {"id": 100255, "token": "\" Conveyor\""}
100257
- {"id": 100256, "token": "null"}
100258
- {"id": 100257, "token": "\"<|endoftext|>\""}
100259
- {"id": 100258, "token": "\"<|fim_prefix|>\""}
100260
- {"id": 100259, "token": "\"<|fim_middle|>\""}
100261
- {"id": 100260, "token": "\"<|fim_suffix|>\""}
100262
- {"id": 100261, "token": "null"}
100263
- {"id": 100262, "token": "null"}
100264
- {"id": 100263, "token": "null"}
100265
- {"id": 100264, "token": "null"}
100266
- {"id": 100265, "token": "null"}
100267
- {"id": 100266, "token": "null"}
100268
- {"id": 100267, "token": "null"}
100269
- {"id": 100268, "token": "null"}
100270
- {"id": 100269, "token": "null"}
100271
- {"id": 100270, "token": "null"}
100272
- {"id": 100271, "token": "null"}
100273
- {"id": 100272, "token": "null"}
100274
- {"id": 100273, "token": "null"}
100275
- {"id": 100274, "token": "null"}
100276
- {"id": 100275, "token": "null"}
100277
- {"id": 100276, "token": "\"<|endofprompt|>\""}
 
99964
  {"id": 99963, "token": "\" Geg\""}
99965
  {"id": 99964, "token": "\"\\tdto\""}
99966
  {"id": 99965, "token": "\".defaultValue\""}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
vocab/internlm_chat_7b/__init__.py CHANGED
@@ -3,4 +3,5 @@ https://huggingface.co/internlm/internlm-chat-7b
3
  """
4
 
5
  from transformers import AutoTokenizer
 
6
  tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)
 
3
  """
4
 
5
  from transformers import AutoTokenizer
6
+
7
  tokenizer = AutoTokenizer.from_pretrained("internlm/internlm-chat-7b", trust_remote_code=True)