Spaces:
Running
Running
File size: 1,296 Bytes
751936e d10ecd7 751936e f4973d4 751936e d10ecd7 751936e f4973d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
"""
vocab size: 106029
中文汉字数:54230, 中文标点数: 549
moss很奇怪,
"""
import json
from transformers import AutoTokenizer, BloomTokenizerFast
# tokenizer = AutoTokenizer.from_pretrained("tokenizer", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("moss-moon-003-sft", trust_remote_code=True)
print("vocab size:", tokenizer.vocab_size)
# tokens = tokenizer.encode("中国\nabcde<eoc>")
tokens = tokenizer.encode("中<eoc>")
decode_line = tokenizer.decode(tokens)
for token in tokens:
print(token, tokenizer.decode([token]))
def test1():
word = "中"
token_ids = tokenizer.encode(word)
tokens = tokenizer.convert_ids_to_tokens(token_ids)
print(tokens)
print([ord(k) for k in tokens[0]])
decode_str = tokenizer.convert_tokens_to_string(tokens)
print(decode_str)
def test_token():
for word in "中国解决方法黑白侗,。!?;":
encoding = tokenizer.encode(word)
for token_id in encoding:
decode_str = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
token = tokenizer.convert_ids_to_tokens([token_id])
print(word, token_id, decode_str, json.dumps(decode_str), token, json.dumps(token))
# test_token()
test1() |