Spaces:
Running
Running
File size: 7,162 Bytes
d10ecd7 9d1b27e d10ecd7 2bd606a 79b95c3 9495a4f d10ecd7 2bd606a d10ecd7 9d1b27e 2bd606a 1b7fc74 d10ecd7 2bd606a d27a756 d10ecd7 f4973d4 d10ecd7 2bd606a 1b7fc74 79b95c3 d10ecd7 9495a4f d10ecd7 9495a4f d10ecd7 2bd606a e6543ac d10ecd7 a6c67ec d10ecd7 9495a4f d10ecd7 1b7fc74 9d1b27e d10ecd7 9d1b27e d10ecd7 9495a4f b15345c d10ecd7 7cb27ea 1b7fc74 2bd606a 814ee6b d10ecd7 2bd606a 1b7fc74 9495a4f 2bd606a 9495a4f d10ecd7 9495a4f 2bd606a d10ecd7 7a8d6d6 9495a4f 7a8d6d6 9495a4f 7cb27ea 9495a4f 7a8d6d6 2bd606a 7a8d6d6 9495a4f 2bd606a 814ee6b d10ecd7 2bd606a 9495a4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
import gradio as gr
import json
import copy
import pandas as pd
from vocab import tokenizer_factory
from character_util import iter_vocab
from utils.log_util import logger
from functools import lru_cache
default_user_input = """\
Replace this text in the input field to see how tokenization works.
Buenos días!
华为发布Mate60手机。
ラグビーワールドカップ2023フランス"""
# default_tokenizer_name_1 = "Meta/llama3"
default_tokenizer_name_1 = "gradientai/Llama-3-8B-Instruct-Gradient-1048k"
default_tokenizer_name_2 = "openai/gpt-4"
@lru_cache
def _tokenize(
text: str,
tokenizer_name: str,
color_num: int = 5,
add_special_token: bool = False
):
logger.info("param=" + json.dumps({"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False))
pos_tokens = []
tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
if add_special_token:
encoding = tokenizer.encode(text, add_special_tokens=True)
else:
encoding = tokenizer.encode(text, add_special_tokens=False)
table = []
for idx, token_id in enumerate(encoding):
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
pos_tokens.extend([(decode_text, str(idx % color_num))])
# token "Byte": # 这是 utf-8编码吧?
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
if isinstance(token, bytes):
try:
token_str = token.decode("utf-8")
except:
token_str = token.decode("utf-8", errors="ignore")
logger.error(f"{idx}: decode_error: " + json.dumps( # gpt_35_turbo 经常有token会decode error,这里用来记录一下
{"tokenizer_type": tokenizer_name, "token": str(token), "token_str": token_str},
ensure_ascii=False))
token_bytes = token
# json_dumps = json.dumps(token_str)
elif isinstance(token, str):
token_str = token
token_bytes = bytes(token_str, "utf-8")
# json_dumps = json.dumps(token_str)
else:
logger.error(f"{idx}: wrong type for token {token_id} {type(token)} " + json.dumps(
{"text": text, "tokenizer_type": tokenizer_name}, ensure_ascii=False))
token_str = token
token_bytes = token
# continue
# ⭐
# TODO: gpt3.5_turbo错误: 只有id和text是对的,token和 utf8都是错的。说明 convert_ids_to_tokens 出错了。
table.append(
{"TokenID": token_id,
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
"Text": decode_text, #
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
"UTF8 Bytes": str(token_bytes),
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
}
)
table_df = pd.DataFrame(table)
logger.info(f"tokenizer_type={tokenizer_name}, Tokens={table[:4]}")
return pos_tokens, len(encoding), table_df
def tokenize(
text: str,
tokenizer_name: str,
color_num: int = 5,
add_special_token: bool = False
):
""" tokenize wrapper
As gr.Update would be overwritten after passing to frontend, we apply lru_cache in _tokenize.
"""
pos_tokens, num_tokens, table_df = _tokenize(text, tokenizer_name, color_num, add_special_token)
return gr.update(value=pos_tokens, label=f"Tokens: {num_tokens}"), table_df
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
"""
input_text.change
"""
pos_tokens_1, table_df_1 = tokenize(text, tokenizer_type_1)
pos_tokens_2, table_df_2 = tokenize(text, tokenizer_type_2)
return pos_tokens_1, table_df_1, pos_tokens_2, table_df_2
@lru_cache
def basic_count(tokenizer_name):
stats = iter_vocab(tokenizer_name)
return stats['vocab_size'], f'{stats["organization"]}'
# return tokenizer.vocab_size, f'{stats["中文汉字数"]["中文单字"]}/{stats["中文汉字数"]["中文多字"]}'
# def get_compress_rate(tokenizer_name, all_corpus, unit):
# tokenizer = tokenizer_factory.get_tokenizer(tokenizer_name)
# compress_rate_stats = tokenize_corpus(tokenizer, all_corpus)
# compress_rate = unit_convertor(compress_rate_stats, unit)
# return compress_rate
@lru_cache
def get_overlap_token_size(tokenizer_name_1, tokenizer_name_2):
tokenizer1 = tokenizer_factory.get_tokenizer(tokenizer_name_1)
tokenizer2 = tokenizer_factory.get_tokenizer(tokenizer_name_2)
vocab_set_1 = tokenizer1.get_vocab().keys()
vocab_set_2 = tokenizer2.get_vocab().keys()
token1 = next(iter(vocab_set_1))
token2 = next(iter(vocab_set_2))
if type(token1) != type(token2): # bytes str
if isinstance(token1, str):
vocab_set_1 = set([token.encode("utf-8") for token in vocab_set_1])
if isinstance(token2, str):
vocab_set_2 = set([token.encode("utf-8") for token in vocab_set_2])
overlap_tokens = vocab_set_1 & vocab_set_2
overlap_token_size = len(overlap_tokens)
logger.info(
f"{overlap_token_size} OverlapTokens of {tokenizer_name_1} {tokenizer_name_2}: {list(overlap_tokens)[:10]}")
return overlap_token_size, overlap_token_size
def on_load(url_params, request: gr.Request):
"""
onLoad
"""
text = None
tokenizer_type_1 = None
tokenizer_type_2 = None
try:
url_params = json.loads(url_params)
except:
url_params = {}
if request:
logger.info(str(request.headers))
client_ip = request.client.host
# local_ip = socket.gethostbyname(socket.gethostbyname(""))
# headers = request.kwargs['headers']
# if headers and 'x-forwarded-for' in headers:
# x_forwarded_for = headers['x-forwarded-for']
# client_ip = x_forwarded_for.split(' ')[0] if x_forwarded_for else ""
# if "referer" in request.headers: # not work for huggingface-space
# url_params = parse_qs(urlparse(request.headers["referer"]).query)
# url_params = {k: v[0] for k, v in url_params.items() if len(v) > 0}
tokenizer_type_1 = url_params.get("tokenizer1", default_tokenizer_name_1)
tokenizer_type_2 = url_params.get("tokenizer2", default_tokenizer_name_2)
text = url_params.get("text", default_user_input)
logger.info(f"client_ip: {client_ip}; params: {url_params}")
return text, tokenizer_type_1, tokenizer_type_2
# def compress_rate_unit_change(unit):
# return gr.update(label=f"Compress Rate: {unit}"), gr.update(label=f"Compress Rate: {unit}"),
def test_coding():
bytes1 = b'\xe4\xb8\xad'
print(bytes1) # b'\xe4\xb8\xad'
if __name__ == "__main__":
print(get_overlap_token_size("gpt-35-turbo", "gpt-4"))
# print(basic_count("internlm_chat_7b"))
|