Spaces:
Running
Running
File size: 6,617 Bytes
751936e f4973d4 751936e 814ee6b 751936e f4973d4 814ee6b f4973d4 751936e 814ee6b 751936e f4973d4 751936e 814ee6b 751936e f4973d4 d10ecd7 814ee6b f4973d4 814ee6b d10ecd7 814ee6b d10ecd7 751936e 814ee6b f4973d4 751936e 814ee6b f4973d4 814ee6b f4973d4 c75633b 814ee6b f4973d4 814ee6b f4973d4 814ee6b f4973d4 814ee6b c75633b 814ee6b f4973d4 814ee6b f4973d4 814ee6b 751936e 814ee6b 751936e 814ee6b 751936e d10ecd7 751936e 814ee6b 751936e 814ee6b 751936e 814ee6b d10ecd7 751936e 9495a4f 814ee6b f4973d4 814ee6b f4973d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
"""
TODO: 繁体、简体、语种、
"""
import os
import json
from collections import Counter
from utils.log_util import logger
from utils.text_util import is_zh_char, is_all_zh, has_zh, is_all_digit, has_digit, get_zh_count, get_digit_count, get_space_count
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
zh_tokens = [line.strip() for line in open(os.path.join(CURRENT_DIR, "vocab.jd.txt.v2"), "r", encoding="utf-8") if
is_zh_char(line.strip())]
def to_unicode(text):
return ''.join(r'\u{:04X}'.format(ord(chr)) for chr in text)
def zh_iterator():
for idx in range(ord(u'\u4e00'), ord(u'\u9fa5')):
yield (chr(idx))
def get_coding_length(tokenizer, vocab, filter=None):
"""
计算编码长度。(有些中文汉字被解码成多个token)
"""
all_length = []
for word in vocab:
if len(word) > 1:
continue
if filter is not None and filter(word):
continue
try:
tokens = tokenizer.encode(word)
except Exception as e:
print(e)
all_length.append(len(tokens))
# if len(tokens.ids) > 1:
# if len(tokens) > 3:
# print(word, tokens)
dist_length = Counter(all_length)
mean_length = round(sum(all_length) / len(all_length), 2)
return dist_length, mean_length
def remove_special_char():
"""
:return:
"""
# bert词典有 ##开头的
# byteBPE词典有带空格的
# decode_str = decode_str.strip().replace("#", "") # TODO, 按类型
pass
cache = {}
def iter_vocab(tokenizer, from_cache=True, cache_dir="stats/iter_vocab"):
"""
由于速度较快,建议不采用文件缓存。
:param tokenizer:
:param from_cache:
:return:
"""
cache_dir = os.path.join(CURRENT_DIR, f"../{cache_dir}")
os.makedirs(cache_dir, exist_ok=True)
name = tokenizer.alias
# L1 cache
if from_cache and name in cache:
logger.info(f"load {name} from cache")
return cache[name]
# L2 cache: not recommended
# has_zh_token_stats = {"total_tokens": 0, "mean_token_length": 0}
# all_zh_token_stats = {"total_tokens": 0, "mean_token_length": 0}
# has_number_token_stats = {"total_tokens": 0, "mean_token_length": 0}
# all_number_token_stats = {"total_tokens": 0, "mean_token_length": 0}
has_zh_tokens = []
all_zh_tokens = []
has_digit_tokens = []
all_digit_tokens = []
has_space_tokens = []
all_space_tokens = []
# zh_tags = ["all_zh", "has_zh"]
# digit_tags = ["all_digit", "has_digit"]
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
# symbol_count = 0
all_single_zh_tokens = set()
zh_symbol_count = 0
buffer = []
for token_id in range(tokenizer.vocab_size):
decode_str = tokenizer.decode([token_id], skip_special_tokens=False)
token = tokenizer.convert_ids_to_tokens([token_id], skip_special_tokens=False)[0]
# tokenizer.convert_tokens_to_string(tokens)
tags = []
if token is None: # 有些词典有空的id(不连续)
continue
if isinstance(token, bytes):
token = token.decode("utf-8", errors="ignore")
digit_count = get_digit_count(decode_str)
if is_all_zh(decode_str):
tags.append("all_zh")
all_zh_tokens.append(decode_str)
elif has_zh(decode_str):
tags.append("has_zh")
has_zh_tokens.append(decode_str)
if is_all_digit(decode_str):
tags.append("all_digit")
all_digit_tokens.append(decode_str)
elif has_digit(decode_str):
tags.append("has_digit")
has_digit_tokens.append(decode_str)
space_count = get_space_count(decode_str)
zh_count = get_zh_count(decode_str)
buffer.append(json.dumps(
{"id": token_id,
"token": token,
"token_decode": decode_str,
"token_dumps": json.dumps(token),
"token_unicode": to_unicode(token),
"token_len": len(decode_str),
"zh_count": zh_count, # 包含汉字的数目
"tags": tags,
"zh_symbol_count": zh_symbol_count,
"": "",
},
ensure_ascii=False) + "\n")
# if zh_count >= 1:
# zh_token_count["total"] += 1
# if zh_count > 1:
# zh_token_count["中文多字"] += 1
# else:
# zh_token_count["中文单字"] += 1
# all_single_zh_tokens.add(decode_str.strip().replace("#", ""))
#
# zh_token_count["中文单字-去重后"] = len(all_single_zh_tokens)
dist_length, mean_length = get_coding_length(tokenizer, zh_tokens, filter=lambda k: not is_zh_char(k))
# TODO: 繁体字,简体字
result = {
"name": name,
"impl": str(tokenizer.__class__),
"vocab_size": tokenizer.vocab_size,
"中文token数": len(has_zh_tokens),
"中文token的平均长度": None,
"纯中文token的平均长度": None,
"中文标点数": zh_symbol_count,
"中文汉字编码长度均值": mean_length,
"中文汉字编码长度分布": json.dumps(dist_length),
"纯数字token数": digit_count,
"纯数字token的平均长度": None,
"纯中文token数": None,
"纯space的token数": space_count,
"纯space的token的平均长度": None,
}
out_path = os.path.join(cache_dir, f"{name}.vocab.jsonl")
logger.info(f"saving vocab to {out_path}")
with open(out_path, "w", encoding="utf-8") as f_out:
f_out.write(json.dumps(result, ensure_ascii=False) + "\n")
for line in buffer:
f_out.write(line)
cache[name] = result
return result
if __name__ == "__main__":
# test_coding_length(jd_vocab_tokens, filter=lambda k: not is_chinese(k))
# test_coding_length(zh_punc)
# test_coding_length(zh_iterator())
# from vocab.chatglm2_6b import tokenizer; name = "chatglm2_6b"
# from vocab.chatglm_6b import tokenizer; name="chatglm_6b"
# from vocab.baichuan2 import tokenizer; name="baichuan2"
from vocab.gpt_4 import tokenizer; name="gpt4"
# from vocab.gpt2 import tokenizer; name="gpt2"
# from vocab.qwen1_5_14b_chat import tokenizer; name="qwen1_5_14b_chat"
# from vocab.gpt_nexo_20b import tokenizer; name="gpt_nexo_20b"
# from vocab.fastchat_t5_3b import tokenizer; name="fastchat_t5_3b"
print(iter_vocab(tokenizer, name=name))
|