🤗 Transformers
Apprentissage automatique de pointe pour PyTorch, TensorFlow, et JAX.
🤗 Transformers fournit des API et des outils pour télécharger et entraîner facilement des modèles pré-entraînés de pointe. L'utilisation de modèles pré-entraînés peut réduire vos coûts de calcul, votre empreinte carbone, et vous faire économiser le temps et les ressources nécessaires pour entraîner un modèle à partir de zéro. Ces modèles prennent en charge des tâches courantes dans différentes modalités, telles que :
📝 Traitement automatique des langues: classification de texte, reconnaissance d'entités, système de question-réponse, modèle de langage, génération de résumé, traduction, question à choix multiples et génération de texte.
🖼️ Vision par ordinateur: classification d'image, détection d'objet et segmentation.
🗣️ Audio: reconnaissance automatique de la parole et classification audio.
🐙 Multimodalité: système de question-réponse avec des tableaux ou images, reconnaissance optique de caractères, extraction d'information depuis des documents scannés et classification de vidéo.
🤗 Transformers prend en charge l'interopérabilité entre PyTorch, TensorFlow et JAX. Cela permet d'utiliser un framework différent à chaque étape de la vie d'un modèle, par exemple entraîner un modèle en trois lignes de code avec un framework, et le charger pour l'inférence avec un autre. Les modèles peuvent également être exportés dans un format comme ONNX et TorchScript pour être déployés dans des environnements de production.
Rejoignez la communauté grandissante sur le Hub, le forum ou Discord dès aujourd'hui !
Si vous cherchez un support personnalisé de l'équipe Hugging Face
Contents
La documentation est organisée en 5 parties:
DEMARRER propose une visite rapide de la bibliothèque et des instructions d'installation pour être opérationnel.
TUTORIELS excellent point de départ pour les débutants. Cette section vous aidera à acquérir les compétences de base dont vous avez besoin pour commencer à utiliser la bibliothèque.
GUIDES D'UTILISATION pour différentes tâches comme par exemple le finetuning d'un modèle pré-entraîné pour la classification de texte ou comment créer et partager votre propre modèle.
GUIDES CONCEPTUELS pour plus de discussions et d'explications sur les concepts et les idées sous-jacentes aux modèles, aux tâches et à la philosophie de conception de 🤗 Transformers.
API décrit toutes les classes et fonctions :
- CLASSES PRINCIPALES détaille les classes les plus importantes comme la configuration, le modèle, le tokenizer et le pipeline..
- MODELES détaille les classes et les fonctions propres à chaque modèle de la bibliothèque.
- UTILITAIRES INTERNES détaille les classes et fonctions utilitaires utilisées en interne.
Modèles supportés
- ALBERT (from Google Research and the Toyota Technological Institute at Chicago) released with the paper ALBERT: A Lite BERT for Self-supervised Learning of Language Representations, by Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.
- ALIGN (from Google Research) released with the paper Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision by Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig.
- AltCLIP (from BAAI) released with the paper AltCLIP: Altering the Language Encoder in CLIP for Extended Language Capabilities by Chen, Zhongzhi and Liu, Guang and Zhang, Bo-Wen and Ye, Fulong and Yang, Qinghong and Wu, Ledell.
- Audio Spectrogram Transformer (from MIT) released with the paper AST: Audio Spectrogram Transformer by Yuan Gong, Yu-An Chung, James Glass.
- BART (from Facebook) released with the paper BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension by Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov and Luke Zettlemoyer.
- BARThez (from École polytechnique) released with the paper BARThez: a Skilled Pretrained French Sequence-to-Sequence Model by Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis.
- BARTpho (from VinAI Research) released with the paper BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese by Nguyen Luong Tran, Duong Minh Le and Dat Quoc Nguyen.
- BEiT (from Microsoft) released with the paper BEiT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong, Furu Wei.
- BERT (from Google) released with the paper BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
- BERT For Sequence Generation (from Google) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- BERTweet (from VinAI Research) released with the paper BERTweet: A pre-trained language model for English Tweets by Dat Quoc Nguyen, Thanh Vu and Anh Tuan Nguyen.
- BigBird-Pegasus (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- BigBird-RoBERTa (from Google Research) released with the paper Big Bird: Transformers for Longer Sequences by Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, Amr Ahmed.
- BioGpt (from Microsoft Research AI4Science) released with the paper BioGPT: generative pre-trained transformer for biomedical text generation and mining by Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng Zhang, Hoifung Poon and Tie-Yan Liu.
- BiT (from Google AI) released with the paper Big Transfer (BiT): General Visual Representation Learning by Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, Neil Houlsby.
- Blenderbot (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BlenderbotSmall (from Facebook) released with the paper Recipes for building an open-domain chatbot by Stephen Roller, Emily Dinan, Naman Goyal, Da Ju, Mary Williamson, Yinhan Liu, Jing Xu, Myle Ott, Kurt Shuster, Eric M. Smith, Y-Lan Boureau, Jason Weston.
- BLIP (from Salesforce) released with the paper BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi.
- BLOOM (from BigScience workshop) released by the BigScience Workshop.
- BORT (from Alexa) released with the paper Optimal Subarchitecture Extraction For BERT by Adrian de Wynter and Daniel J. Perry.
- BridgeTower (from Harbin Institute of Technology/Microsoft Research Asia/Intel Labs) released with the paper BridgeTower: Building Bridges Between Encoders in Vision-Language Representation Learning by Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Wanxiang Che, Nan Duan.
- ByT5 (from Google Research) released with the paper ByT5: Towards a token-free future with pre-trained byte-to-byte models by Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam Roberts, Colin Raffel.
- CamemBERT (from Inria/Facebook/Sorbonne) released with the paper CamemBERT: a Tasty French Language Model by Louis Martin*, Benjamin Muller*, Pedro Javier Ortiz Suárez*, Yoann Dupont, Laurent Romary, Éric Villemonte de la Clergerie, Djamé Seddah and Benoît Sagot.
- CANINE (from Google Research) released with the paper CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language Representation by Jonathan H. Clark, Dan Garrette, Iulia Turc, John Wieting.
- Chinese-CLIP (from OFA-Sys) released with the paper Chinese CLIP: Contrastive Vision-Language Pretraining in Chinese by An Yang, Junshu Pan, Junyang Lin, Rui Men, Yichang Zhang, Jingren Zhou, Chang Zhou.
- CLIP (from OpenAI) released with the paper Learning Transferable Visual Models From Natural Language Supervision by Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever.
- CLIPSeg (from University of Göttingen) released with the paper Image Segmentation Using Text and Image Prompts by Timo Lüddecke and Alexander Ecker.
- CodeGen (from Salesforce) released with the paper A Conversational Paradigm for Program Synthesis by Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, Caiming Xiong.
- Conditional DETR (from Microsoft Research Asia) released with the paper Conditional DETR for Fast Training Convergence by Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqiang Li, Yuhui Yuan, Lei Sun, Jingdong Wang.
- ConvBERT (from YituTech) released with the paper ConvBERT: Improving BERT with Span-based Dynamic Convolution by Zihang Jiang, Weihao Yu, Daquan Zhou, Yunpeng Chen, Jiashi Feng, Shuicheng Yan.
- ConvNeXT (from Facebook AI) released with the paper A ConvNet for the 2020s by Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, Saining Xie.
- ConvNeXTV2 (from Facebook AI) released with the paper ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders by Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, Saining Xie.
- CPM (from Tsinghua University) released with the paper CPM: A Large-scale Generative Chinese Pre-trained Language Model by Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng, Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun, Zhiyuan Liu, Minlie Huang, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun.
- CTRL (from Salesforce) released with the paper CTRL: A Conditional Transformer Language Model for Controllable Generation by Nitish Shirish Keskar*, Bryan McCann*, Lav R. Varshney, Caiming Xiong and Richard Socher.
- CvT (from Microsoft) released with the paper CvT: Introducing Convolutions to Vision Transformers by Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu, Xiyang Dai, Lu Yuan, Lei Zhang.
- Data2Vec (from Facebook) released with the paper Data2Vec: A General Framework for Self-supervised Learning in Speech, Vision and Language by Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli.
- DeBERTa (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- DeBERTa-v2 (from Microsoft) released with the paper DeBERTa: Decoding-enhanced BERT with Disentangled Attention by Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen.
- Decision Transformer (from Berkeley/Facebook/Google) released with the paper Decision Transformer: Reinforcement Learning via Sequence Modeling by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch.
- Deformable DETR (from SenseTime Research) released with the paper Deformable DETR: Deformable Transformers for End-to-End Object Detection by Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, Jifeng Dai.
- DeiT (from Facebook) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
- DETA (from The University of Texas at Austin) released with the paper NMS Strikes Back by Jeffrey Ouyang-Zhang, Jang Hyun Cho, Xingyi Zhou, Philipp Krähenbühl.
- DETR (from Facebook) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, Sergey Zagoruyko.
- DialoGPT (from Microsoft Research) released with the paper DialoGPT: Large-Scale Generative Pre-training for Conversational Response Generation by Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, Bill Dolan.
- DiNAT (from SHI Labs) released with the paper Dilated Neighborhood Attention Transformer by Ali Hassani and Humphrey Shi.
- DistilBERT (from HuggingFace), released together with the paper DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter by Victor Sanh, Lysandre Debut and Thomas Wolf. The same method has been applied to compress GPT2 into DistilGPT2, RoBERTa into DistilRoBERTa, Multilingual BERT into DistilmBERT and a German version of DistilBERT.
- DiT (from Microsoft Research) released with the paper DiT: Self-supervised Pre-training for Document Image Transformer by Junlong Li, Yiheng Xu, Tengchao Lv, Lei Cui, Cha Zhang, Furu Wei.
- Donut (from NAVER), released together with the paper OCR-free Document Understanding Transformer by Geewook Kim, Teakgyu Hong, Moonbin Yim, Jeongyeon Nam, Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo Yun, Dongyoon Han, Seunghyun Park.
- DPR (from Facebook) released with the paper Dense Passage Retrieval for Open-Domain Question Answering by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih.
- DPT (from Intel Labs) released with the paper Vision Transformers for Dense Prediction by René Ranftl, Alexey Bochkovskiy, Vladlen Koltun.
- EfficientFormer (from Snap Research) released with the paper EfficientFormer: Vision Transformers at MobileNetSpeed by Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, Jian Ren.
- ELECTRA (from Google Research/Stanford University) released with the paper ELECTRA: Pre-training text encoders as discriminators rather than generators by Kevin Clark, Minh-Thang Luong, Quoc V. Le, Christopher D. Manning.
- EncoderDecoder (from Google Research) released with the paper Leveraging Pre-trained Checkpoints for Sequence Generation Tasks by Sascha Rothe, Shashi Narayan, Aliaksei Severyn.
- ERNIE (from Baidu) released with the paper ERNIE: Enhanced Representation through Knowledge Integration by Yu Sun, Shuohuan Wang, Yukun Li, Shikun Feng, Xuyi Chen, Han Zhang, Xin Tian, Danxiang Zhu, Hao Tian, Hua Wu.
- ESM (from Meta AI) are transformer protein language models. ESM-1b was released with the paper Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences by Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, and Rob Fergus. ESM-1v was released with the paper Language models enable zero-shot prediction of the effects of mutations on protein function by Joshua Meier, Roshan Rao, Robert Verkuil, Jason Liu, Tom Sercu and Alexander Rives. ESM-2 and ESMFold were released with the paper Language models of protein sequences at the scale of evolution enable accurate structure prediction by Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives.
- FastSpeech2Conformer (from ESPnet) released with the paper Recent Developments On Espnet Toolkit Boosted By Conformer by Pengcheng Guo, Florian Boyer, Xuankai Chang, Tomoki Hayashi, Yosuke Higuchi, Hirofumi Inaguma, Naoyuki Kamo, Chenda Li, Daniel Garcia-Romero, Jiatong Shi, Jing Shi, Shinji Watanabe, Kun Wei, Wangyou Zhang, and Yuekai Zhang.
- FLAN-T5 (from Google AI) released in the repository google-research/t5x by Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei
- FlauBERT (from CNRS) released with the paper FlauBERT: Unsupervised Language Model Pre-training for French by Hang Le, Loïc Vial, Jibril Frej, Vincent Segonne, Maximin Coavoux, Benjamin Lecouteux, Alexandre Allauzen, Benoît Crabbé, Laurent Besacier, Didier Schwab.
- FLAVA (from Facebook AI) released with the paper FLAVA: A Foundational Language And Vision Alignment Model by Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, and Douwe Kiela.
- FNet (from Google Research) released with the paper FNet: Mixing Tokens with Fourier Transforms by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
- Funnel Transformer (from CMU/Google Brain) released with the paper Funnel-Transformer: Filtering out Sequential Redundancy for Efficient Language Processing by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
- GIT (from Microsoft Research) released with the paper GIT: A Generative Image-to-text Transformer for Vision and Language by Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu, Lijuan Wang.
- GLPN (from KAIST) released with the paper Global-Local Path Networks for Monocular Depth Estimation with Vertical CutDepth by Doyeon Kim, Woonghyun Ga, Pyungwhan Ahn, Donggyu Joo, Sehwan Chun, Junmo Kim.
- GPT (from OpenAI) released with the paper Improving Language Understanding by Generative Pre-Training by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
- GPT Neo (from EleutherAI) released in the repository EleutherAI/gpt-neo by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy.
- GPT NeoX (from EleutherAI) released with the paper GPT-NeoX-20B: An Open-Source Autoregressive Language Model by Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He, Connor Leahy, Kyle McDonell, Jason Phang, Michael Pieler, USVSN Sai Prashanth, Shivanshu Purohit, Laria Reynolds, Jonathan Tow, Ben Wang, Samuel Weinbach
- GPT NeoX Japanese (from ABEJA) released by Shinya Otani, Takayoshi Makabe, Anuj Arora, and Kyo Hattori.
- GPT-2 (from OpenAI) released with the paper Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.
- GPT-J (from EleutherAI) released in the repository kingoflolz/mesh-transformer-jax by Ben Wang and Aran Komatsuzaki.
- GPT-Sw3 (from AI-Sweden) released with the paper Lessons Learned from GPT-SW3: Building the First Large-Scale Generative Language Model for Swedish by Ariel Ekgren, Amaru Cuba Gyllensten, Evangelia Gogoulou, Alice Heiman, Severine Verlinden, Joey Öhman, Fredrik Carlsson, Magnus Sahlgren.
- Graphormer (from Microsoft) released with the paper Do Transformers Really Perform Bad for Graph Representation? by Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu.
- GroupViT (from UCSD, NVIDIA) released with the paper GroupViT: Semantic Segmentation Emerges from Text Supervision by Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon, Thomas Breuel, Jan Kautz, Xiaolong Wang.
- Hubert (from Facebook) released with the paper HuBERT: Self-Supervised Speech Representation Learning by Masked Prediction of Hidden Units by Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai, Kushal Lakhotia, Ruslan Salakhutdinov, Abdelrahman Mohamed.
- I-BERT (from Berkeley) released with the paper I-BERT: Integer-only BERT Quantization by Sehoon Kim, Amir Gholami, Zhewei Yao, Michael W. Mahoney, Kurt Keutzer.
- ImageGPT (from OpenAI) released with the paper Generative Pretraining from Pixels by Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Heewoo Jun, David Luan, Ilya Sutskever.
- Jukebox (from OpenAI) released with the paper Jukebox: A Generative Model for Music by Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford, Ilya Sutskever.
- LayoutLM (from Microsoft Research Asia) released with the paper LayoutLM: Pre-training of Text and Layout for Document Image Understanding by Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, Ming Zhou.
- LayoutLMv2 (from Microsoft Research Asia) released with the paper LayoutLMv2: Multi-modal Pre-training for Visually-Rich Document Understanding by Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Wanxiang Che, Min Zhang, Lidong Zhou.
- LayoutLMv3 (from Microsoft Research Asia) released with the paper LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking by Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, Furu Wei.
- LayoutXLM (from Microsoft Research Asia) released with the paper LayoutXLM: Multimodal Pre-training for Multilingual Visually-rich Document Understanding by Yiheng Xu, Tengchao Lv, Lei Cui, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha Zhang, Furu Wei.
- LED (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- LeViT (from Meta AI) released with the paper LeViT: A Vision Transformer in ConvNet's Clothing for Faster Inference by Ben Graham, Alaaeldin El-Nouby, Hugo Touvron, Pierre Stock, Armand Joulin, Hervé Jégou, Matthijs Douze.
- LiLT (from South China University of Technology) released with the paper LiLT: A Simple yet Effective Language-Independent Layout Transformer for Structured Document Understanding by Jiapeng Wang, Lianwen Jin, Kai Ding.
- Longformer (from AllenAI) released with the paper Longformer: The Long-Document Transformer by Iz Beltagy, Matthew E. Peters, Arman Cohan.
- LongT5 (from Google AI) released with the paper LongT5: Efficient Text-To-Text Transformer for Long Sequences by Mandy Guo, Joshua Ainslie, David Uthus, Santiago Ontanon, Jianmo Ni, Yun-Hsuan Sung, Yinfei Yang.
- LUKE (from Studio Ousia) released with the paper LUKE: Deep Contextualized Entity Representations with Entity-aware Self-attention by Ikuya Yamada, Akari Asai, Hiroyuki Shindo, Hideaki Takeda, Yuji Matsumoto.
- LXMERT (from UNC Chapel Hill) released with the paper LXMERT: Learning Cross-Modality Encoder Representations from Transformers for Open-Domain Question Answering by Hao Tan and Mohit Bansal.
- M-CTC-T (from Facebook) released with the paper Pseudo-Labeling For Massively Multilingual Speech Recognition by Loren Lugosch, Tatiana Likhomanenko, Gabriel Synnaeve, and Ronan Collobert.
- M2M100 (from Facebook) released with the paper Beyond English-Centric Multilingual Machine Translation by Angela Fan, Shruti Bhosale, Holger Schwenk, Zhiyi Ma, Ahmed El-Kishky, Siddharth Goyal, Mandeep Baines, Onur Celebi, Guillaume Wenzek, Vishrav Chaudhary, Naman Goyal, Tom Birch, Vitaliy Liptchinsky, Sergey Edunov, Edouard Grave, Michael Auli, Armand Joulin.
- MarianMT Machine translation models trained using OPUS data by Jörg Tiedemann. The Marian Framework is being developed by the Microsoft Translator Team.
- MarkupLM (from Microsoft Research Asia) released with the paper MarkupLM: Pre-training of Text and Markup Language for Visually-rich Document Understanding by Junlong Li, Yiheng Xu, Lei Cui, Furu Wei.
- Mask2Former (from FAIR and UIUC) released with the paper Masked-attention Mask Transformer for Universal Image Segmentation by Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar.
- MaskFormer (from Meta and UIUC) released with the paper Per-Pixel Classification is Not All You Need for Semantic Segmentation by Bowen Cheng, Alexander G. Schwing, Alexander Kirillov.
- mBART (from Facebook) released with the paper Multilingual Denoising Pre-training for Neural Machine Translation by Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad, Mike Lewis, Luke Zettlemoyer.
- mBART-50 (from Facebook) released with the paper Multilingual Translation with Extensible Multilingual Pretraining and Finetuning by Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Naman Goyal, Vishrav Chaudhary, Jiatao Gu, Angela Fan.
- Megatron-BERT (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- Megatron-GPT2 (from NVIDIA) released with the paper Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism by Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper and Bryan Catanzaro.
- mLUKE (from Studio Ousia) released with the paper mLUKE: The Power of Entity Representations in Multilingual Pretrained Language Models by Ryokan Ri, Ikuya Yamada, and Yoshimasa Tsuruoka.
- MobileBERT (from CMU/Google Brain) released with the paper MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices by Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou.
- MobileNetV1 (from Google Inc.) released with the paper MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications by Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam.
- MobileNetV2 (from Google Inc.) released with the paper MobileNetV2: Inverted Residuals and Linear Bottlenecks by Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, Liang-Chieh Chen.
- MobileViT (from Apple) released with the paper MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer by Sachin Mehta and Mohammad Rastegari.
- MPNet (from Microsoft Research) released with the paper MPNet: Masked and Permuted Pre-training for Language Understanding by Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, Tie-Yan Liu.
- MT5 (from Google AI) released with the paper mT5: A massively multilingual pre-trained text-to-text transformer by Linting Xue, Noah Constant, Adam Roberts, Mihir Kale, Rami Al-Rfou, Aditya Siddhant, Aditya Barua, Colin Raffel.
- MVP (from RUC AI Box) released with the paper MVP: Multi-task Supervised Pre-training for Natural Language Generation by Tianyi Tang, Junyi Li, Wayne Xin Zhao and Ji-Rong Wen.
- NAT (from SHI Labs) released with the paper Neighborhood Attention Transformer by Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
- Nezha (from Huawei Noah’s Ark Lab) released with the paper NEZHA: Neural Contextualized Representation for Chinese Language Understanding by Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiashu Lin, Xin Jiang, Xiao Chen and Qun Liu.
- NLLB (from Meta) released with the paper No Language Left Behind: Scaling Human-Centered Machine Translation by the NLLB team.
- Nyströmformer (from the University of Wisconsin - Madison) released with the paper Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention by Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn Fung, Yin Li, Vikas Singh.
- OneFormer (from SHI Labs) released with the paper OneFormer: One Transformer to Rule Universal Image Segmentation by Jitesh Jain, Jiachen Li, MangTik Chiu, Ali Hassani, Nikita Orlov, Humphrey Shi.
- OPT (from Meta AI) released with the paper OPT: Open Pre-trained Transformer Language Models by Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen et al.
- OWL-ViT (from Google AI) released with the paper Simple Open-Vocabulary Object Detection with Vision Transformers by Matthias Minderer, Alexey Gritsenko, Austin Stone, Maxim Neumann, Dirk Weissenborn, Alexey Dosovitskiy, Aravindh Mahendran, Anurag Arnab, Mostafa Dehghani, Zhuoran Shen, Xiao Wang, Xiaohua Zhai, Thomas Kipf, and Neil Houlsby.
- Pegasus (from Google) released with the paper PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization by Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu.
- PEGASUS-X (from Google) released with the paper Investigating Efficiently Extending Transformers for Long Input Summarization by Jason Phang, Yao Zhao, and Peter J. Liu.
- Perceiver IO (from Deepmind) released with the paper Perceiver IO: A General Architecture for Structured Inputs & Outputs by Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff, Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, João Carreira.
- PhoBERT (from VinAI Research) released with the paper PhoBERT: Pre-trained language models for Vietnamese by Dat Quoc Nguyen and Anh Tuan Nguyen.
- PLBart (from UCLA NLP) released with the paper Unified Pre-training for Program Understanding and Generation by Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, Kai-Wei Chang.
- PoolFormer (from Sea AI Labs) released with the paper MetaFormer is Actually What You Need for Vision by Yu, Weihao and Luo, Mi and Zhou, Pan and Si, Chenyang and Zhou, Yichen and Wang, Xinchao and Feng, Jiashi and Yan, Shuicheng.
- ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- QDQBert (from NVIDIA) released with the paper Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation by Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev and Paulius Micikevicius.
- RAG (from Facebook) released with the paper Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks by Patrick Lewis, Ethan Perez, Aleksandara Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, Douwe Kiela.
- REALM (from Google Research) released with the paper REALM: Retrieval-Augmented Language Model Pre-Training by Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat and Ming-Wei Chang.
- Reformer (from Google Research) released with the paper Reformer: The Efficient Transformer by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya.
- RegNet (from META Platforms) released with the paper Designing Network Design Space by Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, Piotr Dollár.
- RemBERT (from Google Research) released with the paper Rethinking embedding coupling in pre-trained language models by Hyung Won Chung, Thibault Févry, Henry Tsai, M. Johnson, Sebastian Ruder.
- ResNet (from Microsoft Research) released with the paper Deep Residual Learning for Image Recognition by Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun.
- RoBERTa (from Facebook), released together with the paper RoBERTa: A Robustly Optimized BERT Pretraining Approach by Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, Veselin Stoyanov.
- RoBERTa-PreLayerNorm (from Facebook) released with the paper fairseq: A Fast, Extensible Toolkit for Sequence Modeling by Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier, Michael Auli.
- RoCBert (from WeChatAI) released with the paper RoCBert: Robust Chinese Bert with Multimodal Contrastive Pretraining by HuiSu, WeiweiShi, XiaoyuShen, XiaoZhou, TuoJi, JiaruiFang, JieZhou.
- RoFormer (from ZhuiyiTechnology), released together with the paper RoFormer: Enhanced Transformer with Rotary Position Embedding by Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu.
- SegFormer (from NVIDIA) released with the paper SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers by Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M. Alvarez, Ping Luo.
- SEW (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
- SEW-D (from ASAPP) released with the paper Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi.
- SpeechT5 (from Microsoft Research) released with the paper SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing by Junyi Ao, Rui Wang, Long Zhou, Chengyi Wang, Shuo Ren, Yu Wu, Shujie Liu, Tom Ko, Qing Li, Yu Zhang, Zhihua Wei, Yao Qian, Jinyu Li, Furu Wei.
- SpeechToTextTransformer (from Facebook), released together with the paper fairseq S2T: Fast Speech-to-Text Modeling with fairseq by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Dmytro Okhonko, Juan Pino.
- SpeechToTextTransformer2 (from Facebook), released together with the paper Large-Scale Self- and Semi-Supervised Learning for Speech Translation by Changhan Wang, Anne Wu, Juan Pino, Alexei Baevski, Michael Auli, Alexis Conneau.
- Splinter (from Tel Aviv University), released together with the paper Few-Shot Question Answering by Pretraining Span Selection by Ori Ram, Yuval Kirstain, Jonathan Berant, Amir Globerson, Omer Levy.
- SqueezeBERT (from Berkeley) released with the paper SqueezeBERT: What can computer vision teach NLP about efficient neural networks? by Forrest N. Iandola, Albert E. Shaw, Ravi Krishna, and Kurt W. Keutzer.
- Swin Transformer (from Microsoft) released with the paper Swin Transformer: Hierarchical Vision Transformer using Shifted Windows by Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo.
- Swin Transformer V2 (from Microsoft) released with the paper Swin Transformer V2: Scaling Up Capacity and Resolution by Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, Furu Wei, Baining Guo.
- Swin2SR (from University of Würzburg) released with the paper Swin2SR: SwinV2 Transformer for Compressed Image Super-Resolution and Restoration by Marcos V. Conde, Ui-Jin Choi, Maxime Burchi, Radu Timofte.
- SwitchTransformers (from Google) released with the paper Switch Transformers: Scaling to Trillion Parameter Models with Simple and Efficient Sparsity by William Fedus, Barret Zoph, Noam Shazeer.
- T5 (from Google AI) released with the paper Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- T5v1.1 (from Google AI) released in the repository google-research/text-to-text-transfer-transformer by Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu.
- Table Transformer (from Microsoft Research) released with the paper PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents by Brandon Smock, Rohith Pesala, Robin Abraham.
- TAPAS (from Google AI) released with the paper TAPAS: Weakly Supervised Table Parsing via Pre-training by Jonathan Herzig, Paweł Krzysztof Nowak, Thomas Müller, Francesco Piccinno and Julian Martin Eisenschlos.
- TAPEX (from Microsoft Research) released with the paper TAPEX: Table Pre-training via Learning a Neural SQL Executor by Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi Lin, Weizhu Chen, Jian-Guang Lou.
- Time Series Transformer (from HuggingFace).
- TimeSformer (from Facebook) released with the paper Is Space-Time Attention All You Need for Video Understanding? by Gedas Bertasius, Heng Wang, Lorenzo Torresani.
- Trajectory Transformer (from the University of California at Berkeley) released with the paper Offline Reinforcement Learning as One Big Sequence Modeling Problem by Michael Janner, Qiyang Li, Sergey Levine
- Transformer-XL (from Google/CMU) released with the paper Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
- TrOCR (from Microsoft), released together with the paper TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models by Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei Florencio, Cha Zhang, Zhoujun Li, Furu Wei.
- UL2 (from Google Research) released with the paper Unifying Language Learning Paradigms by Yi Tay, Mostafa Dehghani, Vinh Q. Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven Zheng, Neil Houlsby, Donald Metzler
- UniSpeech (from Microsoft Research) released with the paper UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled Data by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei, Michael Zeng, Xuedong Huang.
- UniSpeechSat (from Microsoft Research) released with the paper UNISPEECH-SAT: UNIVERSAL SPEECH REPRESENTATION LEARNING WITH SPEAKER AWARE PRE-TRAINING by Sanyuan Chen, Yu Wu, Chengyi Wang, Zhengyang Chen, Zhuo Chen, Shujie Liu, Jian Wu, Yao Qian, Furu Wei, Jinyu Li, Xiangzhan Yu.
- UPerNet (from Peking University) released with the paper Unified Perceptual Parsing for Scene Understanding by Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, Jian Sun.
- VAN (from Tsinghua University and Nankai University) released with the paper Visual Attention Network by Meng-Hao Guo, Cheng-Ze Lu, Zheng-Ning Liu, Ming-Ming Cheng, Shi-Min Hu.
- VideoMAE (from Multimedia Computing Group, Nanjing University) released with the paper VideoMAE: Masked Autoencoders are Data-Efficient Learners for Self-Supervised Video Pre-Training by Zhan Tong, Yibing Song, Jue Wang, Limin Wang.
- ViLT (from NAVER AI Lab/Kakao Enterprise/Kakao Brain) released with the paper ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision by Wonjae Kim, Bokyung Son, Ildoo Kim.
- Vision Transformer (ViT) (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- VisualBERT (from UCLA NLP) released with the paper VisualBERT: A Simple and Performant Baseline for Vision and Language by Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, Kai-Wei Chang.
- ViT Hybrid (from Google AI) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
- ViTMAE (from Meta AI) released with the paper Masked Autoencoders Are Scalable Vision Learners by Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick.
- ViTMSN (from Meta AI) released with the paper Masked Siamese Networks for Label-Efficient Learning by Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent, Armand Joulin, Michael Rabbat, Nicolas Ballas.
- Wav2Vec2 (from Facebook AI) released with the paper wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Representations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli.
- Wav2Vec2-Conformer (from Facebook AI) released with the paper FAIRSEQ S2T: Fast Speech-to-Text Modeling with FAIRSEQ by Changhan Wang, Yun Tang, Xutai Ma, Anne Wu, Sravya Popuri, Dmytro Okhonko, Juan Pino.
- Wav2Vec2Phoneme (from Facebook AI) released with the paper Simple and Effective Zero-shot Cross-lingual Phoneme Recognition by Qiantong Xu, Alexei Baevski, Michael Auli.
- WavLM (from Microsoft Research) released with the paper WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing by Sanyuan Chen, Chengyi Wang, Zhengyang Chen, Yu Wu, Shujie Liu, Zhuo Chen, Jinyu Li, Naoyuki Kanda, Takuya Yoshioka, Xiong Xiao, Jian Wu, Long Zhou, Shuo Ren, Yanmin Qian, Yao Qian, Jian Wu, Michael Zeng, Furu Wei.
- Whisper (from OpenAI) released with the paper Robust Speech Recognition via Large-Scale Weak Supervision by Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, Ilya Sutskever.
- X-CLIP (from Microsoft Research) released with the paper Expanding Language-Image Pretrained Models for General Video Recognition by Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, Haibin Ling.
- XGLM (From Facebook AI) released with the paper Few-shot Learning with Multilingual Language Models by Xi Victoria Lin, Todor Mihaylov, Mikel Artetxe, Tianlu Wang, Shuohui Chen, Daniel Simig, Myle Ott, Naman Goyal, Shruti Bhosale, Jingfei Du, Ramakanth Pasunuru, Sam Shleifer, Punit Singh Koura, Vishrav Chaudhary, Brian O'Horo, Jeff Wang, Luke Zettlemoyer, Zornitsa Kozareva, Mona Diab, Veselin Stoyanov, Xian Li.
- XLM (from Facebook) released together with the paper Cross-lingual Language Model Pretraining by Guillaume Lample and Alexis Conneau.
- XLM-ProphetNet (from Microsoft Research) released with the paper ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang and Ming Zhou.
- XLM-RoBERTa (from Facebook AI), released together with the paper Unsupervised Cross-lingual Representation Learning at Scale by Alexis Conneau*, Kartikay Khandelwal*, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer and Veselin Stoyanov.
- XLM-RoBERTa-XL (from Facebook AI), released together with the paper Larger-Scale Transformers for Multilingual Masked Language Modeling by Naman Goyal, Jingfei Du, Myle Ott, Giri Anantharaman, Alexis Conneau.
- XLNet (from Google/CMU) released with the paper XLNet: Generalized Autoregressive Pretraining for Language Understanding by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
- XLS-R (from Facebook AI) released with the paper XLS-R: Self-supervised Cross-lingual Speech Representation Learning at Scale by Arun Babu, Changhan Wang, Andros Tjandra, Kushal Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh, Patrick von Platen, Yatharth Saraf, Juan Pino, Alexei Baevski, Alexis Conneau, Michael Auli.
- XLSR-Wav2Vec2 (from Facebook AI) released with the paper Unsupervised Cross-Lingual Representation Learning For Speech Recognition by Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, Michael Auli.
- YOLOS (from Huazhong University of Science & Technology) released with the paper You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection by Yuxin Fang, Bencheng Liao, Xinggang Wang, Jiemin Fang, Jiyang Qi, Rui Wu, Jianwei Niu, Wenyu Liu.
- YOSO (from the University of Wisconsin - Madison) released with the paper You Only Sample (Almost) Once: Linear Cost Self-Attention Via Bernoulli Sampling by Zhanpeng Zeng, Yunyang Xiong, Sathya N. Ravi, Shailesh Acharya, Glenn Fung, Vikas Singh.
Frameworks compatibles
Le tableau ci-dessous représente la prise en charge actuelle dans la bibliothèque pour chacun de ces modèles, qu'ils aient ou non un tokenizer Python (appelé "slow"). Un tokenizer rapide ("fast") soutenu par la bibliothèque 🤗 Tokenizers, qu'ils aient un support en Jax (via Flax), PyTorch, et/ou TensorFlow.
Modèle | Tokenizer slow | Tokenizer fast | PyTorch support | TensorFlow support | Flax Support |
---|---|---|---|---|---|
ALBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
AltCLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
Audio Spectrogram Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
BART | ✅ | ✅ | ✅ | ✅ | ✅ |
BEiT | ❌ | ❌ | ✅ | ❌ | ✅ |
BERT | ✅ | ✅ | ✅ | ✅ | ✅ |
Bert Generation | ✅ | ❌ | ✅ | ❌ | ❌ |
BigBird | ✅ | ✅ | ✅ | ❌ | ✅ |
BigBird-Pegasus | ❌ | ❌ | ✅ | ❌ | ❌ |
BioGpt | ✅ | ❌ | ✅ | ❌ | ❌ |
BiT | ❌ | ❌ | ✅ | ❌ | ❌ |
Blenderbot | ✅ | ✅ | ✅ | ✅ | ✅ |
BlenderbotSmall | ✅ | ✅ | ✅ | ✅ | ✅ |
BLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
BLOOM | ❌ | ✅ | ✅ | ❌ | ❌ |
BridgeTower | ❌ | ❌ | ✅ | ❌ | ❌ |
CamemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
CANINE | ✅ | ❌ | ✅ | ❌ | ❌ |
Chinese-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
CLIP | ✅ | ✅ | ✅ | ✅ | ✅ |
CLIPSeg | ❌ | ❌ | ✅ | ❌ | ❌ |
CodeGen | ✅ | ✅ | ✅ | ❌ | ❌ |
Conditional DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
ConvBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
ConvNeXT | ❌ | ❌ | ✅ | ✅ | ❌ |
CTRL | ✅ | ❌ | ✅ | ✅ | ❌ |
CvT | ❌ | ❌ | ✅ | ✅ | ❌ |
Data2VecAudio | ❌ | ❌ | ✅ | ❌ | ❌ |
Data2VecText | ❌ | ❌ | ✅ | ❌ | ❌ |
Data2VecVision | ❌ | ❌ | ✅ | ✅ | ❌ |
DeBERTa | ✅ | ✅ | ✅ | ✅ | ❌ |
DeBERTa-v2 | ✅ | ✅ | ✅ | ✅ | ❌ |
Decision Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
Deformable DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
DeiT | ❌ | ❌ | ✅ | ✅ | ❌ |
DETA | ❌ | ❌ | ✅ | ❌ | ❌ |
DETR | ❌ | ❌ | ✅ | ❌ | ❌ |
DiNAT | ❌ | ❌ | ✅ | ❌ | ❌ |
DistilBERT | ✅ | ✅ | ✅ | ✅ | ✅ |
DonutSwin | ❌ | ❌ | ✅ | ❌ | ❌ |
DPR | ✅ | ✅ | ✅ | ✅ | ❌ |
DPT | ❌ | ❌ | ✅ | ❌ | ❌ |
EfficientFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
ELECTRA | ✅ | ✅ | ✅ | ✅ | ✅ |
Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
ERNIE | ❌ | ❌ | ✅ | ❌ | ❌ |
ESM | ✅ | ❌ | ✅ | ✅ | ❌ |
FairSeq Machine-Translation | ✅ | ❌ | ✅ | ❌ | ❌ |
FastSpeech2Conformer | ✅ | ❌ | ✅ | ❌ | ❌ |
FlauBERT | ✅ | ❌ | ✅ | ✅ | ❌ |
FLAVA | ❌ | ❌ | ✅ | ❌ | ❌ |
FNet | ✅ | ✅ | ✅ | ❌ | ❌ |
Funnel Transformer | ✅ | ✅ | ✅ | ✅ | ❌ |
GIT | ❌ | ❌ | ✅ | ❌ | ❌ |
GLPN | ❌ | ❌ | ✅ | ❌ | ❌ |
GPT Neo | ❌ | ❌ | ✅ | ❌ | ✅ |
GPT NeoX | ❌ | ✅ | ✅ | ❌ | ❌ |
GPT NeoX Japanese | ✅ | ❌ | ✅ | ❌ | ❌ |
GPT-J | ❌ | ❌ | ✅ | ✅ | ✅ |
GPT-Sw3 | ✅ | ✅ | ✅ | ✅ | ✅ |
Graphormer | ❌ | ❌ | ✅ | ❌ | ❌ |
GroupViT | ❌ | ❌ | ✅ | ✅ | ❌ |
Hubert | ❌ | ❌ | ✅ | ✅ | ❌ |
I-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
ImageGPT | ❌ | ❌ | ✅ | ❌ | ❌ |
Jukebox | ✅ | ❌ | ✅ | ❌ | ❌ |
LayoutLM | ✅ | ✅ | ✅ | ✅ | ❌ |
LayoutLMv2 | ✅ | ✅ | ✅ | ❌ | ❌ |
LayoutLMv3 | ✅ | ✅ | ✅ | ✅ | ❌ |
LED | ✅ | ✅ | ✅ | ✅ | ❌ |
LeViT | ❌ | ❌ | ✅ | ❌ | ❌ |
LiLT | ❌ | ❌ | ✅ | ❌ | ❌ |
Longformer | ✅ | ✅ | ✅ | ✅ | ❌ |
LongT5 | ❌ | ❌ | ✅ | ❌ | ✅ |
LUKE | ✅ | ❌ | ✅ | ❌ | ❌ |
LXMERT | ✅ | ✅ | ✅ | ✅ | ❌ |
M-CTC-T | ❌ | ❌ | ✅ | ❌ | ❌ |
M2M100 | ✅ | ❌ | ✅ | ❌ | ❌ |
Marian | ✅ | ❌ | ✅ | ✅ | ✅ |
MarkupLM | ✅ | ✅ | ✅ | ❌ | ❌ |
Mask2Former | ❌ | ❌ | ✅ | ❌ | ❌ |
MaskFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
MaskFormerSwin | ❌ | ❌ | ❌ | ❌ | ❌ |
mBART | ✅ | ✅ | ✅ | ✅ | ✅ |
Megatron-BERT | ❌ | ❌ | ✅ | ❌ | ❌ |
MobileBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
MobileNetV1 | ❌ | ❌ | ✅ | ❌ | ❌ |
MobileNetV2 | ❌ | ❌ | ✅ | ❌ | ❌ |
MobileViT | ❌ | ❌ | ✅ | ✅ | ❌ |
MPNet | ✅ | ✅ | ✅ | ✅ | ❌ |
MT5 | ✅ | ✅ | ✅ | ✅ | ✅ |
MVP | ✅ | ✅ | ✅ | ❌ | ❌ |
NAT | ❌ | ❌ | ✅ | ❌ | ❌ |
Nezha | ❌ | ❌ | ✅ | ❌ | ❌ |
Nyströmformer | ❌ | ❌ | ✅ | ❌ | ❌ |
OneFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
OpenAI GPT | ✅ | ✅ | ✅ | ✅ | ❌ |
OpenAI GPT-2 | ✅ | ✅ | ✅ | ✅ | ✅ |
OPT | ❌ | ❌ | ✅ | ✅ | ✅ |
OWL-ViT | ❌ | ❌ | ✅ | ❌ | ❌ |
Pegasus | ✅ | ✅ | ✅ | ✅ | ✅ |
PEGASUS-X | ❌ | ❌ | ✅ | ❌ | ❌ |
Perceiver | ✅ | ❌ | ✅ | ❌ | ❌ |
PLBart | ✅ | ❌ | ✅ | ❌ | ❌ |
PoolFormer | ❌ | ❌ | ✅ | ❌ | ❌ |
ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
QDQBert | ❌ | ❌ | ✅ | ❌ | ❌ |
RAG | ✅ | ❌ | ✅ | ✅ | ❌ |
REALM | ✅ | ✅ | ✅ | ❌ | ❌ |
Reformer | ✅ | ✅ | ✅ | ❌ | ❌ |
RegNet | ❌ | ❌ | ✅ | ✅ | ✅ |
RemBERT | ✅ | ✅ | ✅ | ✅ | ❌ |
ResNet | ❌ | ❌ | ✅ | ✅ | ❌ |
RetriBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
RoBERTa-PreLayerNorm | ❌ | ❌ | ✅ | ✅ | ✅ |
RoCBert | ✅ | ❌ | ✅ | ❌ | ❌ |
RoFormer | ✅ | ✅ | ✅ | ✅ | ✅ |
SegFormer | ❌ | ❌ | ✅ | ✅ | ❌ |
SEW | ❌ | ❌ | ✅ | ❌ | ❌ |
SEW-D | ❌ | ❌ | ✅ | ❌ | ❌ |
Speech Encoder decoder | ❌ | ❌ | ✅ | ❌ | ✅ |
Speech2Text | ✅ | ❌ | ✅ | ✅ | ❌ |
Speech2Text2 | ✅ | ❌ | ❌ | ❌ | ❌ |
SpeechT5 | ✅ | ❌ | ✅ | ❌ | ❌ |
Splinter | ✅ | ✅ | ✅ | ❌ | ❌ |
SqueezeBERT | ✅ | ✅ | ✅ | ❌ | ❌ |
Swin Transformer | ❌ | ❌ | ✅ | ✅ | ❌ |
Swin Transformer V2 | ❌ | ❌ | ✅ | ❌ | ❌ |
Swin2SR | ❌ | ❌ | ✅ | ❌ | ❌ |
SwitchTransformers | ❌ | ❌ | ✅ | ❌ | ❌ |
T5 | ✅ | ✅ | ✅ | ✅ | ✅ |
Table Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
TAPAS | ✅ | ❌ | ✅ | ✅ | ❌ |
Time Series Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
TimeSformer | ❌ | ❌ | ✅ | ❌ | ❌ |
Trajectory Transformer | ❌ | ❌ | ✅ | ❌ | ❌ |
Transformer-XL | ✅ | ❌ | ✅ | ✅ | ❌ |
TrOCR | ❌ | ❌ | ✅ | ❌ | ❌ |
UniSpeech | ❌ | ❌ | ✅ | ❌ | ❌ |
UniSpeechSat | ❌ | ❌ | ✅ | ❌ | ❌ |
UPerNet | ❌ | ❌ | ✅ | ❌ | ❌ |
VAN | ❌ | ❌ | ✅ | ❌ | ❌ |
VideoMAE | ❌ | ❌ | ✅ | ❌ | ❌ |
ViLT | ❌ | ❌ | ✅ | ❌ | ❌ |
Vision Encoder decoder | ❌ | ❌ | ✅ | ✅ | ✅ |
VisionTextDualEncoder | ❌ | ❌ | ✅ | ❌ | ✅ |
VisualBERT | ❌ | ❌ | ✅ | ❌ | ❌ |
ViT | ❌ | ❌ | ✅ | ✅ | ✅ |
ViT Hybrid | ❌ | ❌ | ✅ | ❌ | ❌ |
ViTMAE | ❌ | ❌ | ✅ | ✅ | ❌ |
ViTMSN | ❌ | ❌ | ✅ | ❌ | ❌ |
Wav2Vec2 | ✅ | ❌ | ✅ | ✅ | ✅ |
Wav2Vec2-Conformer | ❌ | ❌ | ✅ | ❌ | ❌ |
WavLM | ❌ | ❌ | ✅ | ❌ | ❌ |
Whisper | ✅ | ❌ | ✅ | ✅ | ❌ |
X-CLIP | ❌ | ❌ | ✅ | ❌ | ❌ |
XGLM | ✅ | ✅ | ✅ | ✅ | ✅ |
XLM | ✅ | ❌ | ✅ | ✅ | ❌ |
XLM-ProphetNet | ✅ | ❌ | ✅ | ❌ | ❌ |
XLM-RoBERTa | ✅ | ✅ | ✅ | ✅ | ✅ |
XLM-RoBERTa-XL | ❌ | ❌ | ✅ | ❌ | ❌ |
XLNet | ✅ | ✅ | ✅ | ✅ | ❌ |
YOLOS | ❌ | ❌ | ✅ | ❌ | ❌ |
YOSO | ❌ | ❌ | ✅ | ❌ | ❌ |