Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
# Dense Block as defined in: | |
# Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. | |
# "Densely connected convolutional networks." In Proceedings of the IEEE conference | |
# on computer vision and pattern recognition, pp. 4700-4708. 2017. | |
# | |
# Code Snippet adapted from HoverNet implementation (https://github.com/vqdang/hover_net) | |
# | |
# @ Fabian Hörst, [email protected] | |
# Institute for Artifical Intelligence in Medicine, | |
# University Medicine Essen | |
import torch | |
import torch.nn as nn | |
from collections import OrderedDict | |
class DenseBlock(nn.Module): | |
"""Dense Block as defined in: | |
Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. | |
"Densely connected convolutional networks." In Proceedings of the IEEE conference | |
on computer vision and pattern recognition, pp. 4700-4708. 2017. | |
Only performs `valid` convolution. | |
""" | |
def __init__(self, in_ch, unit_ksize, unit_ch, unit_count, split=1): | |
super(DenseBlock, self).__init__() | |
assert len(unit_ksize) == len(unit_ch), "Unbalance Unit Info" | |
self.nr_unit = unit_count | |
self.in_ch = in_ch | |
self.unit_ch = unit_ch | |
# ! For inference only so init values for batchnorm may not match tensorflow | |
unit_in_ch = in_ch | |
self.units = nn.ModuleList() | |
for idx in range(unit_count): | |
self.units.append( | |
nn.Sequential( | |
OrderedDict( | |
[ | |
("preact_bna/bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)), | |
("preact_bna/relu", nn.ReLU(inplace=True)), | |
( | |
"conv1", | |
nn.Conv2d( | |
unit_in_ch, | |
unit_ch[0], | |
unit_ksize[0], | |
stride=1, | |
padding=0, | |
bias=False, | |
), | |
), | |
("conv1/bn", nn.BatchNorm2d(unit_ch[0], eps=1e-5)), | |
("conv1/relu", nn.ReLU(inplace=True)), | |
# ('conv2/pool', TFSamepaddingLayer(ksize=unit_ksize[1], stride=1)), | |
( | |
"conv2", | |
nn.Conv2d( | |
unit_ch[0], | |
unit_ch[1], | |
unit_ksize[1], | |
groups=split, | |
stride=1, | |
padding=0, | |
bias=False, | |
), | |
), | |
] | |
) | |
) | |
) | |
unit_in_ch += unit_ch[1] | |
self.blk_bna = nn.Sequential( | |
OrderedDict( | |
[ | |
("bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)), | |
("relu", nn.ReLU(inplace=True)), | |
] | |
) | |
) | |
def out_ch(self): | |
return self.in_ch + self.nr_unit * self.unit_ch[-1] | |
def init_weights(self): | |
"""Kaiming (HE) initialization for convolutional layers and constant initialization for normalization and linear layers""" | |
for m in self.modules(): | |
classname = m.__class__.__name__ | |
if isinstance(m, nn.Conv2d): | |
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") | |
if "norm" in classname.lower(): | |
nn.init.constant_(m.weight, 1) | |
nn.init.constant_(m.bias, 0) | |
if "linear" in classname.lower(): | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
def forward(self, prev_feat): | |
for idx in range(self.nr_unit): | |
new_feat = self.units[idx](prev_feat) | |
prev_feat = crop_to_shape(prev_feat, new_feat) | |
prev_feat = torch.cat([prev_feat, new_feat], dim=1) | |
prev_feat = self.blk_bna(prev_feat) | |
return prev_feat | |
# helper functions for cropping | |
def crop_op(x, cropping, data_format="NCHW"): | |
"""Center crop image. | |
Args: | |
x: input image | |
cropping: the substracted amount | |
data_format: choose either `NCHW` or `NHWC` | |
""" | |
crop_t = cropping[0] // 2 | |
crop_b = cropping[0] - crop_t | |
crop_l = cropping[1] // 2 | |
crop_r = cropping[1] - crop_l | |
if data_format == "NCHW": | |
x = x[:, :, crop_t:-crop_b, crop_l:-crop_r] | |
else: | |
x = x[:, crop_t:-crop_b, crop_l:-crop_r, :] | |
return x | |
def crop_to_shape(x, y, data_format="NCHW"): | |
"""Centre crop x so that x has shape of y. y dims must be smaller than x dims. | |
Args: | |
x: input array | |
y: array with desired shape. | |
""" | |
assert ( | |
y.shape[0] <= x.shape[0] and y.shape[1] <= x.shape[1] | |
), "Ensure that y dimensions are smaller than x dimensions!" | |
x_shape = x.size() | |
y_shape = y.size() | |
if data_format == "NCHW": | |
crop_shape = (x_shape[2] - y_shape[2], x_shape[3] - y_shape[3]) | |
else: | |
crop_shape = (x_shape[1] - y_shape[1], x_shape[2] - y_shape[2]) | |
return crop_op(x, crop_shape, data_format) | |