File size: 5,452 Bytes
aea73e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# -*- coding: utf-8 -*-
# Dense Block as defined in:
# Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
# "Densely connected convolutional networks." In Proceedings of the IEEE conference
# on computer vision and pattern recognition, pp. 4700-4708. 2017.
#
# Code Snippet adapted from HoverNet implementation (https://github.com/vqdang/hover_net)
#
# @ Fabian Hörst, [email protected]
# Institute for Artifical Intelligence in Medicine,
# University Medicine Essen


import torch
import torch.nn as nn

from collections import OrderedDict


class DenseBlock(nn.Module):
    """Dense Block as defined in:

    Huang, Gao, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger.
    "Densely connected convolutional networks." In Proceedings of the IEEE conference
    on computer vision and pattern recognition, pp. 4700-4708. 2017.

    Only performs `valid` convolution.

    """

    def __init__(self, in_ch, unit_ksize, unit_ch, unit_count, split=1):
        super(DenseBlock, self).__init__()
        assert len(unit_ksize) == len(unit_ch), "Unbalance Unit Info"

        self.nr_unit = unit_count
        self.in_ch = in_ch
        self.unit_ch = unit_ch

        # ! For inference only so init values for batchnorm may not match tensorflow
        unit_in_ch = in_ch
        self.units = nn.ModuleList()
        for idx in range(unit_count):
            self.units.append(
                nn.Sequential(
                    OrderedDict(
                        [
                            ("preact_bna/bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)),
                            ("preact_bna/relu", nn.ReLU(inplace=True)),
                            (
                                "conv1",
                                nn.Conv2d(
                                    unit_in_ch,
                                    unit_ch[0],
                                    unit_ksize[0],
                                    stride=1,
                                    padding=0,
                                    bias=False,
                                ),
                            ),
                            ("conv1/bn", nn.BatchNorm2d(unit_ch[0], eps=1e-5)),
                            ("conv1/relu", nn.ReLU(inplace=True)),
                            # ('conv2/pool', TFSamepaddingLayer(ksize=unit_ksize[1], stride=1)),
                            (
                                "conv2",
                                nn.Conv2d(
                                    unit_ch[0],
                                    unit_ch[1],
                                    unit_ksize[1],
                                    groups=split,
                                    stride=1,
                                    padding=0,
                                    bias=False,
                                ),
                            ),
                        ]
                    )
                )
            )
            unit_in_ch += unit_ch[1]

        self.blk_bna = nn.Sequential(
            OrderedDict(
                [
                    ("bn", nn.BatchNorm2d(unit_in_ch, eps=1e-5)),
                    ("relu", nn.ReLU(inplace=True)),
                ]
            )
        )

    def out_ch(self):
        return self.in_ch + self.nr_unit * self.unit_ch[-1]

    def init_weights(self):
        """Kaiming (HE) initialization for convolutional layers and constant initialization for normalization and linear layers"""
        for m in self.modules():
            classname = m.__class__.__name__

            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")

            if "norm" in classname.lower():
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

            if "linear" in classname.lower():
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def forward(self, prev_feat):
        for idx in range(self.nr_unit):
            new_feat = self.units[idx](prev_feat)
            prev_feat = crop_to_shape(prev_feat, new_feat)
            prev_feat = torch.cat([prev_feat, new_feat], dim=1)
        prev_feat = self.blk_bna(prev_feat)

        return prev_feat


# helper functions for cropping
def crop_op(x, cropping, data_format="NCHW"):
    """Center crop image.

    Args:
        x: input image
        cropping: the substracted amount
        data_format: choose either `NCHW` or `NHWC`

    """
    crop_t = cropping[0] // 2
    crop_b = cropping[0] - crop_t
    crop_l = cropping[1] // 2
    crop_r = cropping[1] - crop_l
    if data_format == "NCHW":
        x = x[:, :, crop_t:-crop_b, crop_l:-crop_r]
    else:
        x = x[:, crop_t:-crop_b, crop_l:-crop_r, :]
    return x


def crop_to_shape(x, y, data_format="NCHW"):
    """Centre crop x so that x has shape of y. y dims must be smaller than x dims.

    Args:
        x: input array
        y: array with desired shape.

    """
    assert (
        y.shape[0] <= x.shape[0] and y.shape[1] <= x.shape[1]
    ), "Ensure that y dimensions are smaller than x dimensions!"

    x_shape = x.size()
    y_shape = y.size()
    if data_format == "NCHW":
        crop_shape = (x_shape[2] - y_shape[2], x_shape[3] - y_shape[3])
    else:
        crop_shape = (x_shape[1] - y_shape[1], x_shape[2] - y_shape[2])
    return crop_op(x, crop_shape, data_format)