wu981526092's picture
update
8513c92
import time
import pandas as pd
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import create_models, configure_settings, load_documents_and_create_index, \
create_chat_prompt_template, execute_query
from datasets import Dataset, DatasetDict, load_dataset, concatenate_datasets
client = AzureOpenAI(azure_endpoint="https://personality-service.openai.azure.com/",
api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2024-02-15-preview")
TOKEN = os.getenv('hf_token')
def store_feedback(user_input, response, feedback, rating,repo):
dataset = load_dataset(repo, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
new_entry = pd.DataFrame({"user_input": [user_input], "response": [response], "feedback": [feedback], "rate": [rating]})
new_dataset = Dataset.from_pandas(new_entry)
updated_dataset = concatenate_datasets([dataset["train"], new_dataset])
updated_dataset.push_to_hub(repo, private=False, token=TOKEN)
# Function to generate a completion using OpenAI API
def generate_one_completion(message, temperature):
response = client.chat.completions.create(
model="personality_gpt4o",
temperature=temperature,
max_tokens=1000, # Adjust based on desired response length
frequency_penalty=0.2, # To avoid repetition
presence_penalty=0.2, # To introduce new topics
messages=message,
stream=False
)
return response
import json
def get_profile_str(profile):
bio_info = profile['bio_information']
main_profile = profile['main_profile']
red_flag = profile['red_flag']
motivation = profile['motivation']
profile_str = f"Bio Information:\n"
for key, value in bio_info.items():
profile_str += f"- {key.replace('_', ' ').title()}: {value}\n"
profile_str += f"\nMain Profile:\n"
for key, value in main_profile.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
profile_str += f"\nRed Flags:\n"
for key, value in red_flag.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
profile_str += f"\nMotivation:\n"
for key, value in motivation.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
return profile_str
def generate_prompt_from_profile(profile, version="TestTakersSummary"):
with open('prompts.json') as f:
prompt_sets = json.load(f)['Prompts']
prompt_templates = prompt_sets[version]
try:
# Fetching profile data
individual_name = profile['bio_information'].get('Name', 'the individual')
# Generating bio, profile, and red flags sections
bio_section = "\n".join(
[f"- {k.replace('_', ' ').title()}: {v}" for k, v in profile['bio_information'].items()])
main_profile_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['main_profile'].items()])
red_flags_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['red_flag'].items()])
motivation_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['motivation'].items()])
# Replacing placeholders in the prompts
prompts = [
x.replace('{{INDIVIDUAL_NAME}}', individual_name).replace('{{BIO}}', bio_section).replace('{{PROFILE}}',main_profile_section).replace(
'{{REDFLAGS_PROFILE}}', red_flags_section).replace('{{MOTIVATION_PROFILE}}', motivation_section) for x in prompt_templates]
# Compiling final prompt
prompt = "\n".join(prompts)
except KeyError as e:
return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]
message = [
{"role": "system", "content": prompt_sets[version][0]},
{"role": "user", "content": prompt}
]
return message
def display_profile_info(profile):
main_profile = profile["main_profile"]
red_flag = profile["red_flag"]
bio_info = profile["bio_information"]
st.sidebar.markdown("### Bio Information: ")
st.sidebar.markdown("\n".join([f"- **{key.replace('_', ' ')}**: {value}" for key, value in bio_info.items()]))
st.sidebar.markdown("### Main Profile: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in
main_profile.items()]))
st.sidebar.markdown("### Red Flags: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in red_flag.items()]))
st.sidebar.markdown("### Motivation: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in profile['motivation'].items()]))
def validate_json(profile):
required_keys = ['bio_information', 'main_profile', 'red_flag', 'motivation']
for key in required_keys:
if key not in profile:
return False, f"Key '{key}' is missing."
if not isinstance(profile[key], dict):
return False, f"'{key}' should be a dictionary."
return True, "JSON structure is valid."
def logout():
st.session_state['authenticated'] = False
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
def main_app():
sidebar_components()
if st.button('Logout'):
logout()
# Streamlit app
st.title('Metaprofiling\'s Career Insight Analyzer Demo')
# Check if a profile is selected
if st.session_state['profile']:
profile = st.session_state['profile']
display_profile_info(profile) # Display the profile information
st.markdown("""
### Generation Temperature
Adjust the 'Generation Temperature' to control the creativity of the AI responses.
- A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
- A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
""")
# Temperature slider
st.session_state['temperature'] = st.slider("", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
# Allow user to choose from different versions of the prompt
st.session_state['version'] = st.selectbox("Select Prompt Version", ["TestTakersSummary", "ManagersSummary"])
# Generate and display prompt
if st.button(f'Analyze Profile ({st.session_state["version"]})'):
# with st.spinner('Generating completion...'):
prompt = generate_prompt_from_profile(profile, version=st.session_state['version'])
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="personality_gpt4o",
temperature=st.session_state['temperature'],
max_tokens=4096, # Adjust based on desired response length
frequency_penalty=0.2, # To avoid repetition
presence_penalty=0.2, # To introduce new topics
messages=prompt,
stream=True)
response = st.write_stream(stream)
# st.markdown(response_test_taker)
st.session_state['analysis'] = response
st.session_state['show_chat'] = True
st.rerun()
# display the response
if st.session_state['analysis']:
# Ask for feedback
st.markdown(st.session_state['analysis'])
# Ask the user to choose the type of feedback
feedback_type = st.selectbox(
"Select the type of feedback:",
["Report", "Coach"]
)
# Set the dataset identifier based on feedback type
if feedback_type == "Report":
dataset_id = "wu981526092/feedback_report"
else:
dataset_id = "wu981526092/feedback_coach"
st.markdown(f"Provide feedback on the {feedback_type.lower()}:")
criteria = {
"Faithfulness": "Are all claims made in the answer inferred from the given context, i.e., not hallucinated?",
"Answer Relevancy": "Is the answer relevant to the question?",
"Context Relevancy": "Is the context relevant to the question?",
"Correctness": "Is the answer factually correct, based on the context?",
"Clarity": "Is the answer explained clearly without the extensive jargon of the original document?",
"Completeness": "Is the question answered fully, with all parts and subquestions being addressed?",
}
ratings = {}
for criterion, description in criteria.items():
ratings[criterion] = st.slider(f"{criterion}: {description}", 0, 10, 5,key=f"{feedback_type} {criterion}")
feedback = st.text_input("Provide additional feedback on the response:",key=f"{feedback_type} feedback")
if st.button('Submit Report Feedback'):
if feedback_type == "Report":
store_feedback(str(generate_prompt_from_profile(profile, version=st.session_state['version'])), st.session_state['analysis'], feedback, str(ratings), dataset_id)
else:
store_feedback(str(st.session_state['coach_query']), str(st.session_state['coach_response']), feedback, str(ratings), dataset_id)
st.success("Feedback submitted successfully!")
else:
st.write("Please upload a profile JSON file or use the example profile.")
# Function to verify credentials and set the session state
def verify_credentials():
if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv(
"password_app"):
st.session_state['authenticated'] = True
else:
st.error("Invalid username or password")
# Login page
def login_page():
st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
st.write(
"This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")
# Description and Instructions
st.markdown("""
## How to Use This Application
- Enter your username and password in the sidebar.
- Click on 'Login' to access the application.
- Once logged in, you will be able to upload and analyze professional profiles.
""")
st.sidebar.write("Login:")
username = st.sidebar.text_input("Username") # , key='username')
password = st.sidebar.text_input("Password", type="password") # , key='password')
st.session_state['username'] = username
st.session_state['password'] = password
st.sidebar.button("Login", on_click=verify_credentials)
def sidebar_components():
with st.sidebar:
if st.button('Reset'):
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
if not st.session_state['show_chat']:
# Instructions for JSON format
st.markdown("### JSON File Requirements:")
st.markdown("1. Must contain 'bio_information', 'main_profile', and 'red_flag' as top-level keys.")
st.markdown("2. Both keys should have dictionary values.")
st.markdown("### Choose the Definition:")
st.session_state['definition'] = st.selectbox("Select Definition", [1, 2, 3])
st.session_state['chat_context'] = st.selectbox("Select Chat Context", ["analysis", "profile"])
# File uploader
st.markdown("### Upload a profile JSON file")
uploaded_file = st.file_uploader("", type=['json'])
if uploaded_file is not None:
try:
profile_data = json.load(uploaded_file)
valid, message = validate_json(profile_data)
if valid:
st.session_state['profile'] = profile_data
else:
st.error(message)
except json.JSONDecodeError:
st.error("Invalid JSON file. Please upload a valid JSON file.")
# Button to load example profile
if st.button('Use Example Profile'):
if st.session_state['definition'] == 1:
file_name = "example_data_definition_1.json"
elif st.session_state['definition'] == 2:
file_name = "example_data_definition_2.json"
else:
file_name = "example_data_definition_3.json"
with open(file_name, 'r') as file:
st.session_state['profile'] = json.load(file)
else:
st.sidebar.title("Chat with Our Career Advisor")
#st.sidebar.markdown(
#"Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")
# Name to be included in the questions
# name = st.session_state['profile']['bio_information'].get('Name', 'the individual')
# List of question templates where {} will be replaced with the name
question_templates = [
"What are the main risks associated with {}’s profile?",
"What are the implications of {}’s profile for working with others?",
# "What conclusions might we draw from his profile about {}’s style of leadership?",
# "Looking specifically at {}'s Red Flags, are there any particular areas of concern?",
# "Based on this profile, is {} better suited as a COO or a CEO?",
# "If speed of execution is important, based on his profile, how likely is {} to be able to achieve this?",
# "How is {} likely to react to business uncertainty and disruption?",
# "Based on his profile, what should a coaching plan designed for {} focus on?"
]
# Formatting each question template with the name
questions_list = [question.format("Test Taker") for question in question_templates]
# Prepare the questions for Markdown display
questions_markdown = "\n\n".join(
[f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])
# Code to display in the app
st.sidebar.markdown("### Suggest Questions")
st.sidebar.markdown(questions_markdown)
# st.sidebar.text_area("Suggested Questions", value=questions.choices[0].message.content, height=200, disabled=True)
user_input = st.sidebar.text_input("Ask a question about the profile analysis:")
llm, embed_model = create_models()
configure_settings(llm, embed_model)
index = load_documents_and_create_index()
if st.sidebar.button('Submit'):
if user_input:
st.session_state['coach_query'] = str(user_input)
if st.session_state['chat_context'] == "profile":
chat_prompt_template = create_chat_prompt_template(get_profile_str(st.session_state['profile']),st.session_state['definition'])
else:
chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'],st.session_state['definition'])
st.session_state['coach_response'] = execute_query(index, chat_prompt_template, user_input)
st.sidebar.markdown(st.session_state['coach_response'])
# Initialize session state variables with default values if not already set
session_defaults = {
'show_chat': None,
'definition': 1,
'chat_context': "analysis",
'profile': None,
'analysis': None,
'temperature': 0,
'version': "",
'username': '',
'password': '',
'authenticated': False,
'coach_response':"",
'coach_query':""
}
for key, default in session_defaults.items():
if key not in st.session_state:
st.session_state[key] = default
# Show login or main app based on authentication status
if st.session_state['authenticated']:
main_app()
else:
login_page()