Spaces:
Sleeping
Sleeping
File size: 16,932 Bytes
07aabce 228f205 62e10d6 228f205 62e10d6 228f205 4911494 54ff1eb 228f205 4911494 62e10d6 a60d2b1 62e10d6 8513c92 62e10d6 228f205 54a765f 228f205 5f639dd 727d404 f290ec9 63782e9 f290ec9 727d404 63782e9 727d404 228f205 333848e 727d404 d4e272e 727d404 5642940 5f639dd 62e10d6 d12a771 a60d2b1 62e10d6 fb1b6a0 62e10d6 fb1b6a0 62e10d6 228f205 62e10d6 a60d2b1 62e10d6 b6e7533 62e10d6 bcb54f4 a60d2b1 d4e272e 727d404 228f205 b6e7533 727d404 b6e7533 62e10d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import time
import pandas as pd
import streamlit as st
import os
import json
from openai import AzureOpenAI
from model import create_models, configure_settings, load_documents_and_create_index, \
create_chat_prompt_template, execute_query
from datasets import Dataset, DatasetDict, load_dataset, concatenate_datasets
client = AzureOpenAI(azure_endpoint="https://personality-service.openai.azure.com/",
api_key=os.getenv("AZURE_OPENAI_KEY"), api_version="2024-02-15-preview")
TOKEN = os.getenv('hf_token')
def store_feedback(user_input, response, feedback, rating,repo):
dataset = load_dataset(repo, token=TOKEN, download_mode="force_redownload", ignore_verifications=True)
new_entry = pd.DataFrame({"user_input": [user_input], "response": [response], "feedback": [feedback], "rate": [rating]})
new_dataset = Dataset.from_pandas(new_entry)
updated_dataset = concatenate_datasets([dataset["train"], new_dataset])
updated_dataset.push_to_hub(repo, private=False, token=TOKEN)
# Function to generate a completion using OpenAI API
def generate_one_completion(message, temperature):
response = client.chat.completions.create(
model="personality_gpt4o",
temperature=temperature,
max_tokens=1000, # Adjust based on desired response length
frequency_penalty=0.2, # To avoid repetition
presence_penalty=0.2, # To introduce new topics
messages=message,
stream=False
)
return response
import json
def get_profile_str(profile):
bio_info = profile['bio_information']
main_profile = profile['main_profile']
red_flag = profile['red_flag']
motivation = profile['motivation']
profile_str = f"Bio Information:\n"
for key, value in bio_info.items():
profile_str += f"- {key.replace('_', ' ').title()}: {value}\n"
profile_str += f"\nMain Profile:\n"
for key, value in main_profile.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
profile_str += f"\nRed Flags:\n"
for key, value in red_flag.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
profile_str += f"\nMotivation:\n"
for key, value in motivation.items():
profile_str += f"- {key.title()}: {value['score']} - {value['summary']}\n"
return profile_str
def generate_prompt_from_profile(profile, version="TestTakersSummary"):
with open('prompts.json') as f:
prompt_sets = json.load(f)['Prompts']
prompt_templates = prompt_sets[version]
try:
# Fetching profile data
individual_name = profile['bio_information'].get('Name', 'the individual')
# Generating bio, profile, and red flags sections
bio_section = "\n".join(
[f"- {k.replace('_', ' ').title()}: {v}" for k, v in profile['bio_information'].items()])
main_profile_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['main_profile'].items()])
red_flags_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['red_flag'].items()])
motivation_section = "\n".join(
[f"- {trait.title()}: {details['score']} - {details['summary']}" for trait, details in
profile['motivation'].items()])
# Replacing placeholders in the prompts
prompts = [
x.replace('{{INDIVIDUAL_NAME}}', individual_name).replace('{{BIO}}', bio_section).replace('{{PROFILE}}',main_profile_section).replace(
'{{REDFLAGS_PROFILE}}', red_flags_section).replace('{{MOTIVATION_PROFILE}}', motivation_section) for x in prompt_templates]
# Compiling final prompt
prompt = "\n".join(prompts)
except KeyError as e:
return [{"role": "system", "content": f"Error processing profile data: missing {str(e)}"}]
message = [
{"role": "system", "content": prompt_sets[version][0]},
{"role": "user", "content": prompt}
]
return message
def display_profile_info(profile):
main_profile = profile["main_profile"]
red_flag = profile["red_flag"]
bio_info = profile["bio_information"]
st.sidebar.markdown("### Bio Information: ")
st.sidebar.markdown("\n".join([f"- **{key.replace('_', ' ')}**: {value}" for key, value in bio_info.items()]))
st.sidebar.markdown("### Main Profile: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in
main_profile.items()]))
st.sidebar.markdown("### Red Flags: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in red_flag.items()]))
st.sidebar.markdown("### Motivation: ")
st.sidebar.markdown("\n".join(
[f"- **{attribute}**: {details['score']} - {details['summary']}" for attribute, details in profile['motivation'].items()]))
def validate_json(profile):
required_keys = ['bio_information', 'main_profile', 'red_flag', 'motivation']
for key in required_keys:
if key not in profile:
return False, f"Key '{key}' is missing."
if not isinstance(profile[key], dict):
return False, f"'{key}' should be a dictionary."
return True, "JSON structure is valid."
def logout():
st.session_state['authenticated'] = False
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
def main_app():
sidebar_components()
if st.button('Logout'):
logout()
# Streamlit app
st.title('Metaprofiling\'s Career Insight Analyzer Demo')
# Check if a profile is selected
if st.session_state['profile']:
profile = st.session_state['profile']
display_profile_info(profile) # Display the profile information
st.markdown("""
### Generation Temperature
Adjust the 'Generation Temperature' to control the creativity of the AI responses.
- A *lower temperature* (closer to 0.0) generates more predictable, conservative responses.
- A *higher temperature* (closer to 1.0) generates more creative, diverse responses.
""")
# Temperature slider
st.session_state['temperature'] = st.slider("", min_value=0.0, max_value=1.0, value=0.5, step=0.01)
# Allow user to choose from different versions of the prompt
st.session_state['version'] = st.selectbox("Select Prompt Version", ["TestTakersSummary", "ManagersSummary"])
# Generate and display prompt
if st.button(f'Analyze Profile ({st.session_state["version"]})'):
# with st.spinner('Generating completion...'):
prompt = generate_prompt_from_profile(profile, version=st.session_state['version'])
with st.chat_message("assistant"):
stream = client.chat.completions.create(
model="personality_gpt4o",
temperature=st.session_state['temperature'],
max_tokens=4096, # Adjust based on desired response length
frequency_penalty=0.2, # To avoid repetition
presence_penalty=0.2, # To introduce new topics
messages=prompt,
stream=True)
response = st.write_stream(stream)
# st.markdown(response_test_taker)
st.session_state['analysis'] = response
st.session_state['show_chat'] = True
st.rerun()
# display the response
if st.session_state['analysis']:
# Ask for feedback
st.markdown(st.session_state['analysis'])
# Ask the user to choose the type of feedback
feedback_type = st.selectbox(
"Select the type of feedback:",
["Report", "Coach"]
)
# Set the dataset identifier based on feedback type
if feedback_type == "Report":
dataset_id = "wu981526092/feedback_report"
else:
dataset_id = "wu981526092/feedback_coach"
st.markdown(f"Provide feedback on the {feedback_type.lower()}:")
criteria = {
"Faithfulness": "Are all claims made in the answer inferred from the given context, i.e., not hallucinated?",
"Answer Relevancy": "Is the answer relevant to the question?",
"Context Relevancy": "Is the context relevant to the question?",
"Correctness": "Is the answer factually correct, based on the context?",
"Clarity": "Is the answer explained clearly without the extensive jargon of the original document?",
"Completeness": "Is the question answered fully, with all parts and subquestions being addressed?",
}
ratings = {}
for criterion, description in criteria.items():
ratings[criterion] = st.slider(f"{criterion}: {description}", 0, 10, 5,key=f"{feedback_type} {criterion}")
feedback = st.text_input("Provide additional feedback on the response:",key=f"{feedback_type} feedback")
if st.button('Submit Report Feedback'):
if feedback_type == "Report":
store_feedback(str(generate_prompt_from_profile(profile, version=st.session_state['version'])), st.session_state['analysis'], feedback, str(ratings), dataset_id)
else:
store_feedback(str(st.session_state['coach_query']), str(st.session_state['coach_response']), feedback, str(ratings), dataset_id)
st.success("Feedback submitted successfully!")
else:
st.write("Please upload a profile JSON file or use the example profile.")
# Function to verify credentials and set the session state
def verify_credentials():
if st.session_state['username'] == os.getenv("username_app") and st.session_state['password'] == os.getenv(
"password_app"):
st.session_state['authenticated'] = True
else:
st.error("Invalid username or password")
# Login page
def login_page():
st.title("Welcome to Metaprofiling's Career Insight Analyzer Demo")
st.write(
"This application provides in-depth analysis and insights into professional profiles. Please log in to continue.")
# Description and Instructions
st.markdown("""
## How to Use This Application
- Enter your username and password in the sidebar.
- Click on 'Login' to access the application.
- Once logged in, you will be able to upload and analyze professional profiles.
""")
st.sidebar.write("Login:")
username = st.sidebar.text_input("Username") # , key='username')
password = st.sidebar.text_input("Password", type="password") # , key='password')
st.session_state['username'] = username
st.session_state['password'] = password
st.sidebar.button("Login", on_click=verify_credentials)
def sidebar_components():
with st.sidebar:
if st.button('Reset'):
st.session_state['profile'] = None
st.session_state['show_chat'] = None
st.session_state['analysis'] = None
st.rerun()
if not st.session_state['show_chat']:
# Instructions for JSON format
st.markdown("### JSON File Requirements:")
st.markdown("1. Must contain 'bio_information', 'main_profile', and 'red_flag' as top-level keys.")
st.markdown("2. Both keys should have dictionary values.")
st.markdown("### Choose the Definition:")
st.session_state['definition'] = st.selectbox("Select Definition", [1, 2, 3])
st.session_state['chat_context'] = st.selectbox("Select Chat Context", ["analysis", "profile"])
# File uploader
st.markdown("### Upload a profile JSON file")
uploaded_file = st.file_uploader("", type=['json'])
if uploaded_file is not None:
try:
profile_data = json.load(uploaded_file)
valid, message = validate_json(profile_data)
if valid:
st.session_state['profile'] = profile_data
else:
st.error(message)
except json.JSONDecodeError:
st.error("Invalid JSON file. Please upload a valid JSON file.")
# Button to load example profile
if st.button('Use Example Profile'):
if st.session_state['definition'] == 1:
file_name = "example_data_definition_1.json"
elif st.session_state['definition'] == 2:
file_name = "example_data_definition_2.json"
else:
file_name = "example_data_definition_3.json"
with open(file_name, 'r') as file:
st.session_state['profile'] = json.load(file)
else:
st.sidebar.title("Chat with Our Career Advisor")
#st.sidebar.markdown(
#"Hello, we hope you learned something about yourself in this report. This chat is here so you can ask any questions you have about your report! It’s also a great tool to get ideas about how you can use the information in your report for your personal development and achieving your current goals.")
# Name to be included in the questions
# name = st.session_state['profile']['bio_information'].get('Name', 'the individual')
# List of question templates where {} will be replaced with the name
question_templates = [
"What are the main risks associated with {}’s profile?",
"What are the implications of {}’s profile for working with others?",
# "What conclusions might we draw from his profile about {}’s style of leadership?",
# "Looking specifically at {}'s Red Flags, are there any particular areas of concern?",
# "Based on this profile, is {} better suited as a COO or a CEO?",
# "If speed of execution is important, based on his profile, how likely is {} to be able to achieve this?",
# "How is {} likely to react to business uncertainty and disruption?",
# "Based on his profile, what should a coaching plan designed for {} focus on?"
]
# Formatting each question template with the name
questions_list = [question.format("Test Taker") for question in question_templates]
# Prepare the questions for Markdown display
questions_markdown = "\n\n".join(
[f"Q{index + 1}: {question}" for index, question in enumerate(questions_list)])
# Code to display in the app
st.sidebar.markdown("### Suggest Questions")
st.sidebar.markdown(questions_markdown)
# st.sidebar.text_area("Suggested Questions", value=questions.choices[0].message.content, height=200, disabled=True)
user_input = st.sidebar.text_input("Ask a question about the profile analysis:")
llm, embed_model = create_models()
configure_settings(llm, embed_model)
index = load_documents_and_create_index()
if st.sidebar.button('Submit'):
if user_input:
st.session_state['coach_query'] = str(user_input)
if st.session_state['chat_context'] == "profile":
chat_prompt_template = create_chat_prompt_template(get_profile_str(st.session_state['profile']),st.session_state['definition'])
else:
chat_prompt_template = create_chat_prompt_template(st.session_state['analysis'],st.session_state['definition'])
st.session_state['coach_response'] = execute_query(index, chat_prompt_template, user_input)
st.sidebar.markdown(st.session_state['coach_response'])
# Initialize session state variables with default values if not already set
session_defaults = {
'show_chat': None,
'definition': 1,
'chat_context': "analysis",
'profile': None,
'analysis': None,
'temperature': 0,
'version': "",
'username': '',
'password': '',
'authenticated': False,
'coach_response':"",
'coach_query':""
}
for key, default in session_defaults.items():
if key not in st.session_state:
st.session_state[key] = default
# Show login or main app based on authentication status
if st.session_state['authenticated']:
main_app()
else:
login_page()
|