Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
import tensorflow as tf | |
from PIL import Image | |
import numpy as np | |
from huggingface_hub import login, hf_hub_download | |
# Authenticate with Hugging Face token (if available) | |
hf_token = os.environ.get("HF_TOKEN") | |
if hf_token: | |
login(token=hf_token) | |
# Download and load the model from the Hugging Face Hub | |
repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default | |
filename = "your_trained_model.keras" # Updated filename | |
cache_dir = "./models" # Local directory to cache the model | |
os.makedirs(cache_dir, exist_ok=True) | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir) | |
# Load the model | |
model = tf.keras.models.load_model(model_path) | |
# Streamlit UI | |
tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Image Links"]) | |
# Tab 1: Christmas Tree Classifier | |
with tab1: | |
st.title("Christmas Tree Classifier") | |
st.write("Upload an image of a Christmas tree to classify it:") | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image.", use_container_width=True) # Updated to use_container_width | |
st.write("") | |
st.write("Classifying...") | |
# Preprocess the image | |
image = image.resize((224, 224)) # Resize to match your model's input size | |
image_array = np.array(image) / 255.0 # Normalize pixel values | |
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension | |
# Make prediction | |
prediction = model.predict(image_array) | |
# Get predicted class | |
predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated" | |
# Display the prediction | |
st.write(f"Prediction: {predicted_class}") | |
# Tab 2: Sample Image Links | |
with tab2: | |
st.title("Sample Image Links") | |
# First header and paragraph with link | |
st.header("View some of my decorated and undecorated tree samples for the Model here:") | |
st.write("You can view the sample images for both decorated and undecorated trees in the following link:") | |
st.write("[View sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=0)") | |
# Second header and paragraph with download link | |
st.header("Download the tree sample pictures to test them on the model yourself here:") | |
st.write("You can download the tree sample images by clicking on the link below to test them in the Christmas Tree Classifier:") | |
st.write("[Download sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=1)") |