import os import streamlit as st import tensorflow as tf from PIL import Image import numpy as np from huggingface_hub import login, hf_hub_download # Authenticate with Hugging Face token (if available) hf_token = os.environ.get("HF_TOKEN") if hf_token: login(token=hf_token) # Download and load the model from the Hugging Face Hub repo_id = os.environ.get("MODEL_ID", "willco-afk/tree-test-x") # Get repo ID from secret or default filename = "your_trained_model.keras" # Updated filename cache_dir = "./models" # Local directory to cache the model os.makedirs(cache_dir, exist_ok=True) model_path = hf_hub_download(repo_id=repo_id, filename=filename, cache_dir=cache_dir) # Load the model model = tf.keras.models.load_model(model_path) # Streamlit UI tab1, tab2 = st.tabs(["Christmas Tree Classifier", "Sample Image Links"]) # Tab 1: Christmas Tree Classifier with tab1: st.title("Christmas Tree Classifier") st.write("Upload an image of a Christmas tree to classify it:") uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: # Display the uploaded image image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image.", use_container_width=True) # Updated to use_container_width st.write("") st.write("Classifying...") # Preprocess the image image = image.resize((224, 224)) # Resize to match your model's input size image_array = np.array(image) / 255.0 # Normalize pixel values image_array = np.expand_dims(image_array, axis=0) # Add batch dimension # Make prediction prediction = model.predict(image_array) # Get predicted class predicted_class = "Decorated" if prediction[0][0] >= 0.5 else "Undecorated" # Display the prediction st.write(f"Prediction: {predicted_class}") # Tab 2: Sample Image Links with tab2: st.title("Sample Image Links") # First header and paragraph with link st.header("View some of my decorated and undecorated tree samples for the Model here:") st.write("You can view the sample images for both decorated and undecorated trees in the following link:") st.write("[View sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=0)") # Second header and paragraph with download link st.header("Download the tree sample pictures to test them on the model yourself here:") st.write("You can download the tree sample images by clicking on the link below to test them in the Christmas Tree Classifier:") st.write("[Download sample images here](https://www.dropbox.com/scl/fo/cuzo12z39cxv6joz7gz2o/ACf5xSjT7nHqMRdgh21GYlc?rlkey=w10usqhkngf2uxwvllgnqb8tf&st=ld22fl4c&dl=1)")