Spaces:
Running
Running
import argparse | |
import itertools | |
import json | |
import os | |
import time | |
import torch | |
import torch.multiprocessing as mp | |
import torch.nn.functional as F | |
from fastprogress import master_bar, progress_bar | |
from torch.cuda.amp.grad_scaler import GradScaler | |
from torch.distributed import init_process_group | |
from torch.nn.parallel import DistributedDataParallel | |
from torch.utils.data import DataLoader, DistributedSampler | |
from torch.utils.tensorboard import SummaryWriter | |
from .meldataset import (LogMelSpectrogram, MelDataset, get_dataset_filelist, | |
mel_spectrogram) | |
from .models import (Generator, MultiPeriodDiscriminator, | |
MultiScaleDiscriminator, discriminator_loss, feature_loss, | |
generator_loss) | |
from .utils import (AttrDict, build_env, load_checkpoint, plot_spectrogram, | |
save_checkpoint, scan_checkpoint) | |
torch.backends.cudnn.benchmark = True | |
USE_ALT_MELCALC = True | |
def train(rank, a, h): | |
if h.num_gpus > 1: | |
init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'], | |
world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank) | |
torch.cuda.manual_seed(h.seed) | |
device = torch.device('cuda:{:d}'.format(rank)) | |
generator = Generator(h).to(device) | |
mpd = MultiPeriodDiscriminator().to(device) | |
msd = MultiScaleDiscriminator().to(device) | |
if rank == 0: | |
print(generator) | |
os.makedirs(a.checkpoint_path, exist_ok=True) | |
print("checkpoints directory : ", a.checkpoint_path) | |
if os.path.isdir(a.checkpoint_path): | |
cp_g = scan_checkpoint(a.checkpoint_path, 'g_') | |
cp_do = scan_checkpoint(a.checkpoint_path, 'do_') | |
steps = 0 | |
if cp_g is None or cp_do is None: | |
state_dict_do = None | |
last_epoch = -1 | |
else: | |
state_dict_g = load_checkpoint(cp_g, device) | |
state_dict_do = load_checkpoint(cp_do, device) | |
generator.load_state_dict(state_dict_g['generator']) | |
mpd.load_state_dict(state_dict_do['mpd']) | |
msd.load_state_dict(state_dict_do['msd']) | |
steps = state_dict_do['steps'] + 1 | |
last_epoch = state_dict_do['epoch'] | |
print(f"Restored checkpoint from {cp_g} and {cp_do}") | |
if h.num_gpus > 1: | |
print("Multi-gpu detected") | |
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) | |
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) | |
optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()), | |
h.learning_rate, betas=[h.adam_b1, h.adam_b2]) | |
if state_dict_do is not None: | |
optim_g.load_state_dict(state_dict_do['optim_g']) | |
optim_d.load_state_dict(state_dict_do['optim_d']) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch) | |
if a.fp16: | |
scaler_g = GradScaler() | |
scaler_d = GradScaler() | |
train_df, valid_df = get_dataset_filelist(a) | |
trainset = MelDataset(train_df, h.segment_size, h.n_fft, h.num_mels, | |
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0, | |
shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device, | |
fine_tuning=a.fine_tuning, | |
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path, | |
use_alt_melcalc=USE_ALT_MELCALC) | |
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False, | |
sampler=train_sampler, | |
batch_size=h.batch_size, | |
pin_memory=True, | |
persistent_workers=True, | |
drop_last=True) | |
alt_melspec = LogMelSpectrogram(h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).to(device) | |
if rank == 0: | |
validset = MelDataset(valid_df, h.segment_size, h.n_fft, h.num_mels, | |
h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0, | |
fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning, | |
audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path, | |
use_alt_melcalc=USE_ALT_MELCALC) | |
validation_loader = DataLoader(validset, num_workers=1, shuffle=False, | |
sampler=None, | |
batch_size=1, | |
pin_memory=True, | |
persistent_workers=True, | |
drop_last=True) | |
sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs')) | |
generator.train() | |
mpd.train() | |
msd.train() | |
if rank == 0: mb = master_bar(range(max(0, last_epoch), a.training_epochs)) | |
else: mb = range(max(0, last_epoch), a.training_epochs) | |
for epoch in mb: | |
if rank == 0: | |
start = time.time() | |
mb.write("Epoch: {}".format(epoch+1)) | |
if h.num_gpus > 1: | |
train_sampler.set_epoch(epoch) | |
if rank == 0: pb = progress_bar(enumerate(train_loader), total=len(train_loader), parent=mb) | |
else: pb = enumerate(train_loader) | |
for i, batch in pb: | |
if rank == 0: | |
start_b = time.time() | |
x, y, _, y_mel = batch | |
x = x.to(device, non_blocking=True) | |
y = y.to(device, non_blocking=True) | |
y_mel = y_mel.to(device, non_blocking=True) | |
y = y.unsqueeze(1) | |
with torch.cuda.amp.autocast(enabled=a.fp16): | |
y_g_hat = generator(x) | |
if USE_ALT_MELCALC: | |
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1)) | |
else: | |
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, | |
h.fmin, h.fmax_for_loss) | |
# print(x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape) | |
optim_d.zero_grad() | |
with torch.cuda.amp.autocast(enabled=a.fp16): | |
# MPD | |
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g) | |
# MSD | |
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) | |
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g) | |
loss_disc_all = loss_disc_s + loss_disc_f | |
if a.fp16: | |
scaler_d.scale(loss_disc_all).backward() | |
scaler_d.step(optim_d) | |
scaler_d.update() | |
else: | |
loss_disc_all.backward() | |
optim_d.step() | |
# Generator | |
optim_g.zero_grad() | |
with torch.cuda.amp.autocast(enabled=a.fp16): | |
# L1 Mel-Spectrogram Loss | |
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) | |
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
if a.fp16: | |
scaler_g.scale(loss_gen_all).backward() | |
scaler_g.step(optim_g) | |
scaler_g.update() | |
else: | |
loss_gen_all.backward() | |
optim_g.step() | |
if rank == 0: | |
# STDOUT logging | |
if steps % a.stdout_interval == 0: | |
with torch.no_grad(): | |
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
mb.write('Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, sec/batch : {:4.3f}, peak mem: {:5.2f}GB'. \ | |
format(steps, loss_gen_all, mel_error, time.time() - start_b, torch.cuda.max_memory_allocated()/1e9)) | |
mb.child.comment = "Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}". \ | |
format(steps, loss_gen_all, mel_error) | |
# checkpointing | |
if steps % a.checkpoint_interval == 0 and steps != 0: | |
checkpoint_path = "{}/g_{:08d}.pt".format(a.checkpoint_path, steps) | |
save_checkpoint(checkpoint_path, | |
{'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()}) | |
checkpoint_path = "{}/do_{:08d}.pt".format(a.checkpoint_path, steps) | |
save_checkpoint(checkpoint_path, | |
{'mpd': (mpd.module if h.num_gpus > 1 | |
else mpd).state_dict(), | |
'msd': (msd.module if h.num_gpus > 1 | |
else msd).state_dict(), | |
'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps, | |
'epoch': epoch}) | |
# Tensorboard summary logging | |
if steps % a.summary_interval == 0: | |
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
sw.add_scalar("training/disc_loss_total", loss_disc_all, steps) | |
# Validation | |
if steps % a.validation_interval == 0: # and steps != 0: | |
generator.eval() | |
torch.cuda.empty_cache() | |
val_err_tot = 0 | |
with torch.no_grad(): | |
for j, batch in progress_bar(enumerate(validation_loader), total=len(validation_loader), parent=mb): | |
x, y, _, y_mel = batch | |
y_g_hat = generator(x.to(device)) | |
y_mel = y_mel.to(device, non_blocking=True) | |
if USE_ALT_MELCALC: | |
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1)) | |
if y_g_hat_mel.shape[-1] != y_mel.shape[-1]: | |
# pad it | |
n_pad = h.hop_size | |
y_g_hat = F.pad(y_g_hat, (n_pad//2, n_pad - n_pad//2)) | |
y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1)) | |
else: | |
y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, | |
h.hop_size, h.win_size, | |
h.fmin, h.fmax_for_loss) | |
#print('valid', x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape) | |
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
if j <= 4: | |
if steps == 0: | |
sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate) | |
sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps) | |
sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate) | |
if USE_ALT_MELCALC: | |
y_hat_spec = alt_melspec(y_g_hat.squeeze(1)) | |
else: | |
y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, | |
h.hop_size, h.win_size, | |
h.fmin, h.fmax_for_loss) | |
sw.add_figure('generated/y_hat_spec_{}'.format(j), | |
plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps) | |
val_err = val_err_tot / (j+1) | |
sw.add_scalar("validation/mel_spec_error", val_err, steps) | |
mb.write(f"validation run complete at {steps:,d} steps. validation mel spec error: {val_err:5.4f}") | |
generator.train() | |
sw.add_scalar("memory/max_allocated_gb", torch.cuda.max_memory_allocated()/1e9, steps) | |
sw.add_scalar("memory/max_reserved_gb", torch.cuda.max_memory_reserved()/1e9, steps) | |
torch.cuda.reset_peak_memory_stats() | |
torch.cuda.reset_accumulated_memory_stats() | |
steps += 1 | |
scheduler_g.step() | |
scheduler_d.step() | |
if rank == 0: | |
print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start))) | |
def main(): | |
print('Initializing Training Process..') | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--group_name', default=None) | |
parser.add_argument('--audio_root_path', required=True) | |
parser.add_argument('--feature_root_path', required=True) | |
parser.add_argument('--input_training_file', default='LJSpeech-1.1/training.txt') | |
parser.add_argument('--input_validation_file', default='LJSpeech-1.1/validation.txt') | |
parser.add_argument('--checkpoint_path', default='cp_hifigan') | |
parser.add_argument('--config', default='') | |
parser.add_argument('--training_epochs', default=1500, type=int) | |
parser.add_argument('--stdout_interval', default=5, type=int) | |
parser.add_argument('--checkpoint_interval', default=5000, type=int) | |
parser.add_argument('--summary_interval', default=25, type=int) | |
parser.add_argument('--validation_interval', default=1000, type=int) | |
parser.add_argument('--fp16', default=False, type=bool) | |
parser.add_argument('--fine_tuning', action='store_true') | |
a = parser.parse_args() | |
print(a) | |
with open(a.config) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
build_env(a.config, 'config.json', a.checkpoint_path) | |
torch.manual_seed(h.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(h.seed) | |
h.num_gpus = torch.cuda.device_count() | |
h.batch_size = int(h.batch_size / h.num_gpus) | |
print('Batch size per GPU :', h.batch_size) | |
else: | |
pass | |
if h.num_gpus > 1: | |
mp.spawn(train, nprocs=h.num_gpus, args=(a, h,)) | |
else: | |
train(0, a, h) | |
if __name__ == '__main__': | |
main() | |