File size: 15,617 Bytes
c52280c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
import argparse
import itertools
import json
import os
import time

import torch
import torch.multiprocessing as mp
import torch.nn.functional as F
from fastprogress import master_bar, progress_bar
from torch.cuda.amp.grad_scaler import GradScaler
from torch.distributed import init_process_group
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data import DataLoader, DistributedSampler
from torch.utils.tensorboard import SummaryWriter

from .meldataset import (LogMelSpectrogram, MelDataset, get_dataset_filelist,
                         mel_spectrogram)
from .models import (Generator, MultiPeriodDiscriminator,
                     MultiScaleDiscriminator, discriminator_loss, feature_loss,
                     generator_loss)
from .utils import (AttrDict, build_env, load_checkpoint, plot_spectrogram,
                    save_checkpoint, scan_checkpoint)

torch.backends.cudnn.benchmark = True
USE_ALT_MELCALC = True


def train(rank, a, h):
    if h.num_gpus > 1:
        init_process_group(backend=h.dist_config['dist_backend'], init_method=h.dist_config['dist_url'],
                           world_size=h.dist_config['world_size'] * h.num_gpus, rank=rank)

    torch.cuda.manual_seed(h.seed)
    device = torch.device('cuda:{:d}'.format(rank))

    generator = Generator(h).to(device)
    mpd = MultiPeriodDiscriminator().to(device)
    msd = MultiScaleDiscriminator().to(device)

    if rank == 0:
        print(generator)
        os.makedirs(a.checkpoint_path, exist_ok=True)
        print("checkpoints directory : ", a.checkpoint_path)

    if os.path.isdir(a.checkpoint_path):
        cp_g = scan_checkpoint(a.checkpoint_path, 'g_')
        cp_do = scan_checkpoint(a.checkpoint_path, 'do_')

    steps = 0
    if cp_g is None or cp_do is None:
        state_dict_do = None
        last_epoch = -1
    else:
        state_dict_g = load_checkpoint(cp_g, device)
        state_dict_do = load_checkpoint(cp_do, device)
        generator.load_state_dict(state_dict_g['generator'])
        mpd.load_state_dict(state_dict_do['mpd'])
        msd.load_state_dict(state_dict_do['msd'])
        steps = state_dict_do['steps'] + 1
        last_epoch = state_dict_do['epoch']
        print(f"Restored checkpoint from {cp_g} and {cp_do}")

    if h.num_gpus > 1:
        print("Multi-gpu detected")
        generator = DistributedDataParallel(generator, device_ids=[rank]).to(device)
        mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device)
        msd = DistributedDataParallel(msd, device_ids=[rank]).to(device)

    optim_g = torch.optim.AdamW(generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2])
    optim_d = torch.optim.AdamW(itertools.chain(msd.parameters(), mpd.parameters()),
                                h.learning_rate, betas=[h.adam_b1, h.adam_b2])

    if state_dict_do is not None:
        optim_g.load_state_dict(state_dict_do['optim_g'])
        optim_d.load_state_dict(state_dict_do['optim_d'])

    scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=h.lr_decay, last_epoch=last_epoch)
    scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=h.lr_decay, last_epoch=last_epoch)
    if a.fp16:
        scaler_g = GradScaler()
        scaler_d = GradScaler()

    train_df, valid_df = get_dataset_filelist(a)

    trainset = MelDataset(train_df, h.segment_size, h.n_fft, h.num_mels,
                          h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, n_cache_reuse=0,
                          shuffle=False if h.num_gpus > 1 else True, fmax_loss=h.fmax_for_loss, device=device,
                          fine_tuning=a.fine_tuning,
                          audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path, 
                          use_alt_melcalc=USE_ALT_MELCALC)

    train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None

    train_loader = DataLoader(trainset, num_workers=h.num_workers, shuffle=False,
                              sampler=train_sampler,
                              batch_size=h.batch_size,
                              pin_memory=True,
                              persistent_workers=True,
                              drop_last=True)

    alt_melspec = LogMelSpectrogram(h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size, h.fmin, h.fmax).to(device)

    if rank == 0:
        validset = MelDataset(valid_df, h.segment_size, h.n_fft, h.num_mels,
                              h.hop_size, h.win_size, h.sampling_rate, h.fmin, h.fmax, False, False, n_cache_reuse=0,
                              fmax_loss=h.fmax_for_loss, device=device, fine_tuning=a.fine_tuning,
                              audio_root_path=a.audio_root_path, feat_root_path=a.feature_root_path, 
                              use_alt_melcalc=USE_ALT_MELCALC)
        validation_loader = DataLoader(validset, num_workers=1, shuffle=False,
                                       sampler=None,
                                       batch_size=1,
                                       pin_memory=True,
                                       persistent_workers=True,
                                       drop_last=True)

        sw = SummaryWriter(os.path.join(a.checkpoint_path, 'logs'))

    generator.train()
    mpd.train()
    msd.train()
    
    if rank == 0: mb = master_bar(range(max(0, last_epoch), a.training_epochs))
    else: mb = range(max(0, last_epoch), a.training_epochs)

    for epoch in mb:
        if rank == 0:
            start = time.time()
            mb.write("Epoch: {}".format(epoch+1))

        if h.num_gpus > 1:
            train_sampler.set_epoch(epoch)

        if rank == 0: pb = progress_bar(enumerate(train_loader), total=len(train_loader), parent=mb)
        else: pb = enumerate(train_loader)
        

        for i, batch in pb:
            if rank == 0:
                start_b = time.time()
            x, y, _, y_mel = batch
            x = x.to(device, non_blocking=True)
            y = y.to(device, non_blocking=True)
            y_mel = y_mel.to(device, non_blocking=True)
            y = y.unsqueeze(1)
            
            with torch.cuda.amp.autocast(enabled=a.fp16):
                y_g_hat = generator(x)
                if USE_ALT_MELCALC:
                    y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
                else:
                    y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate, h.hop_size, h.win_size,
                                            h.fmin, h.fmax_for_loss)
            # print(x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
            optim_d.zero_grad()

            with torch.cuda.amp.autocast(enabled=a.fp16):
                # MPD
                y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach())
                loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(y_df_hat_r, y_df_hat_g)

                # MSD
                y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach())
                loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(y_ds_hat_r, y_ds_hat_g)

                loss_disc_all = loss_disc_s + loss_disc_f

            if a.fp16: 
                scaler_d.scale(loss_disc_all).backward()
                scaler_d.step(optim_d)
                scaler_d.update()
            else: 
                loss_disc_all.backward()
                optim_d.step()

            # Generator
            optim_g.zero_grad()

            with torch.cuda.amp.autocast(enabled=a.fp16):
                # L1 Mel-Spectrogram Loss
                loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45

                y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat)
                y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat)
                loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
                loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
                loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
                loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
                loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel

            if a.fp16:
                scaler_g.scale(loss_gen_all).backward()
                scaler_g.step(optim_g)
                scaler_g.update()
            else:
                loss_gen_all.backward()
                optim_g.step()

            if rank == 0:
                # STDOUT logging
                if steps % a.stdout_interval == 0:
                    with torch.no_grad():
                        mel_error = F.l1_loss(y_mel, y_g_hat_mel).item()

                    mb.write('Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, sec/batch : {:4.3f}, peak mem: {:5.2f}GB'. \
                            format(steps, loss_gen_all, mel_error, time.time() - start_b, torch.cuda.max_memory_allocated()/1e9))
                    mb.child.comment = "Steps : {:,d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}". \
                            format(steps, loss_gen_all, mel_error)
                    

                # checkpointing
                if steps % a.checkpoint_interval == 0 and steps != 0:
                    checkpoint_path = "{}/g_{:08d}.pt".format(a.checkpoint_path, steps)
                    save_checkpoint(checkpoint_path,
                                    {'generator': (generator.module if h.num_gpus > 1 else generator).state_dict()})
                    checkpoint_path = "{}/do_{:08d}.pt".format(a.checkpoint_path, steps)
                    save_checkpoint(checkpoint_path, 
                                    {'mpd': (mpd.module if h.num_gpus > 1
                                                         else mpd).state_dict(),
                                     'msd': (msd.module if h.num_gpus > 1
                                                         else msd).state_dict(),
                                     'optim_g': optim_g.state_dict(), 'optim_d': optim_d.state_dict(), 'steps': steps,
                                     'epoch': epoch})

                # Tensorboard summary logging
                if steps % a.summary_interval == 0:
                    sw.add_scalar("training/gen_loss_total", loss_gen_all, steps)
                    sw.add_scalar("training/mel_spec_error", mel_error, steps)
                    sw.add_scalar("training/disc_loss_total", loss_disc_all, steps)

                # Validation
                if steps % a.validation_interval == 0:  # and steps != 0:
                    generator.eval()
                    torch.cuda.empty_cache()
                    val_err_tot = 0
                    with torch.no_grad():
                        for j, batch in progress_bar(enumerate(validation_loader), total=len(validation_loader), parent=mb):
                            x, y, _, y_mel = batch
                            y_g_hat = generator(x.to(device))
                            y_mel = y_mel.to(device, non_blocking=True)
                            if USE_ALT_MELCALC:
                                y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
                                if y_g_hat_mel.shape[-1] != y_mel.shape[-1]:
                                    # pad it 
                                    n_pad = h.hop_size 
                                    y_g_hat = F.pad(y_g_hat, (n_pad//2, n_pad - n_pad//2))
                                    y_g_hat_mel = alt_melspec(y_g_hat.squeeze(1))
                            else:
                                y_g_hat_mel = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
                                                            h.hop_size, h.win_size,
                                                            h.fmin, h.fmax_for_loss)
                            #print('valid', x.shape, y_g_hat.shape, y_g_hat_mel.shape, y_mel.shape, y.shape)
                            val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item()

                            if j <= 4:
                                if steps == 0:
                                    sw.add_audio('gt/y_{}'.format(j), y[0], steps, h.sampling_rate)
                                    sw.add_figure('gt/y_spec_{}'.format(j), plot_spectrogram(x[0]), steps)

                                sw.add_audio('generated/y_hat_{}'.format(j), y_g_hat[0], steps, h.sampling_rate)
                                if USE_ALT_MELCALC:
                                    y_hat_spec = alt_melspec(y_g_hat.squeeze(1))
                                else:
                                    y_hat_spec = mel_spectrogram(y_g_hat.squeeze(1), h.n_fft, h.num_mels, h.sampling_rate,
                                                                h.hop_size, h.win_size,
                                                                h.fmin, h.fmax_for_loss)

                                sw.add_figure('generated/y_hat_spec_{}'.format(j),
                                              plot_spectrogram(y_hat_spec.squeeze(0).cpu().numpy()), steps)

                        val_err = val_err_tot / (j+1)
                        sw.add_scalar("validation/mel_spec_error", val_err, steps)
                        mb.write(f"validation run complete at {steps:,d} steps. validation mel spec error: {val_err:5.4f}")

                    generator.train()
                    sw.add_scalar("memory/max_allocated_gb", torch.cuda.max_memory_allocated()/1e9, steps)
                    sw.add_scalar("memory/max_reserved_gb", torch.cuda.max_memory_reserved()/1e9, steps)
                    torch.cuda.reset_peak_memory_stats()
                    torch.cuda.reset_accumulated_memory_stats()

            steps += 1

        scheduler_g.step()
        scheduler_d.step()
        
        if rank == 0:
            print('Time taken for epoch {} is {} sec\n'.format(epoch + 1, int(time.time() - start)))


def main():
    print('Initializing Training Process..')

    parser = argparse.ArgumentParser()

    parser.add_argument('--group_name', default=None)
    parser.add_argument('--audio_root_path', required=True)
    parser.add_argument('--feature_root_path', required=True)
    parser.add_argument('--input_training_file', default='LJSpeech-1.1/training.txt')
    parser.add_argument('--input_validation_file', default='LJSpeech-1.1/validation.txt')
    parser.add_argument('--checkpoint_path', default='cp_hifigan')
    parser.add_argument('--config', default='')
    parser.add_argument('--training_epochs', default=1500, type=int)
    parser.add_argument('--stdout_interval', default=5, type=int)
    parser.add_argument('--checkpoint_interval', default=5000, type=int)
    parser.add_argument('--summary_interval', default=25, type=int)
    parser.add_argument('--validation_interval', default=1000, type=int)
    parser.add_argument('--fp16', default=False, type=bool)
    parser.add_argument('--fine_tuning', action='store_true')

    a = parser.parse_args()
    print(a)
    with open(a.config) as f:
        data = f.read()

    json_config = json.loads(data)
    h = AttrDict(json_config)
    build_env(a.config, 'config.json', a.checkpoint_path)

    torch.manual_seed(h.seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(h.seed)
        h.num_gpus = torch.cuda.device_count()
        h.batch_size = int(h.batch_size / h.num_gpus)
        print('Batch size per GPU :', h.batch_size)
    else:
        pass

    if h.num_gpus > 1:
        mp.spawn(train, nprocs=h.num_gpus, args=(a, h,))
    else:
        train(0, a, h)


if __name__ == '__main__':
    main()