wetdog's picture
Inital demo
c52280c
raw
history blame
7.82 kB
import math
import os
import random
from pathlib import Path
import librosa
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from librosa.filters import mel as librosa_mel_fn
from librosa.util import normalize
from scipy.io.wavfile import read
def load_wav(full_path):
#sampling_rate, data = read(full_path)
#return data, sampling_rate
data, sampling_rate = librosa.load(full_path, sr=None)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
class LogMelSpectrogram(torch.nn.Module):
def __init__(self, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
super().__init__()
self.melspctrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_size,
hop_length=hop_size,
center=center,
power=1.0,
norm="slaney",
onesided=True,
n_mels=num_mels,
mel_scale="slaney",
f_min=fmin,
f_max=fmax
)
self.n_fft = n_fft
self.hop_size = hop_size
def forward(self, wav):
wav = F.pad(wav, ((self.n_fft - self.hop_size) // 2, (self.n_fft - self.hop_size) // 2), "reflect")
mel = self.melspctrogram(wav)
logmel = torch.log(torch.clamp(mel, min=1e-5))
return logmel
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
# print("Padding by", int((n_fft - hop_size)/2), y.shape)
# pre-padding
n_pad = hop_size - ( y.shape[1] % hop_size )
y = F.pad(y.unsqueeze(1), (0, n_pad), mode='reflect').squeeze(1)
# print("intermediate:", y.shape)
y = F.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
spec = spec.abs().clamp_(3e-5)
# print("Post: ", y.shape, spec.shape)
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
def get_dataset_filelist(a):
train_df = pd.read_csv(a.input_training_file)
valid_df = pd.read_csv(a.input_validation_file)
return train_df, valid_df
class MelDataset(torch.utils.data.Dataset):
def __init__(self, training_files, segment_size, n_fft, num_mels,
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
device=None, fmax_loss=None, fine_tuning=False, audio_root_path=None, feat_root_path=None, use_alt_melcalc=False):
self.audio_files = training_files
if shuffle:
self.audio_files = self.audio_files.sample(frac=1, random_state=1234)
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.fmax_loss = fmax_loss
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.fine_tuning = fine_tuning
self.audio_root_path = Path(audio_root_path)
self.feat_root_path = Path(feat_root_path)
self.alt_melspec = LogMelSpectrogram(n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax)
self.use_alt_melcalc = use_alt_melcalc
def __getitem__(self, index):
row = self.audio_files.iloc[index]
if self._cache_ref_count == 0:
audio, sampling_rate = load_wav(self.audio_root_path/row.audio_path)
if not self.fine_tuning:
audio = normalize(audio) * 0.95
self.cached_wav = audio
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.tensor(audio, dtype=torch.float32)
audio = audio.unsqueeze(0)
if not self.fine_tuning:
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start:audio_start+self.segment_size]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel = self.alt_melspec(audio)
else:
mel1 = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
center=False)
mel = mel.permute(0, 2, 1) # (1, dim, seq_len) --> (1, seq_len, dim)
else:
mel = torch.load(self.feat_root_path/row.feat_path, map_location='cpu').float()
if len(mel.shape) < 3:
mel = mel.unsqueeze(0) # (1, seq_len, dim)
if self.split:
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
if audio.size(1) >= self.segment_size:
mel_start = random.randint(0, mel.size(1) - frames_per_seg - 1)
mel = mel[:, mel_start:mel_start + frames_per_seg, :]
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
else:
mel = torch.nn.functional.pad(mel, (0, 0, 0, frames_per_seg - mel.size(2)), 'constant')
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel_loss = self.alt_melspec(audio)
else:
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
center=False)
return (mel.squeeze(), audio.squeeze(0), str(row.audio_path), mel_loss.squeeze())
def __len__(self):
return len(self.audio_files)