Spaces:
Running
Running
import math | |
import os | |
import random | |
from pathlib import Path | |
import librosa | |
import numpy as np | |
import pandas as pd | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.data | |
import torchaudio | |
from librosa.filters import mel as librosa_mel_fn | |
from librosa.util import normalize | |
from scipy.io.wavfile import read | |
def load_wav(full_path): | |
#sampling_rate, data = read(full_path) | |
#return data, sampling_rate | |
data, sampling_rate = librosa.load(full_path, sr=None) | |
return data, sampling_rate | |
def dynamic_range_compression(x, C=1, clip_val=1e-5): | |
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C) | |
def dynamic_range_decompression(x, C=1): | |
return np.exp(x) / C | |
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): | |
return torch.log(torch.clamp(x, min=clip_val) * C) | |
def dynamic_range_decompression_torch(x, C=1): | |
return torch.exp(x) / C | |
def spectral_normalize_torch(magnitudes): | |
output = dynamic_range_compression_torch(magnitudes) | |
return output | |
def spectral_de_normalize_torch(magnitudes): | |
output = dynamic_range_decompression_torch(magnitudes) | |
return output | |
mel_basis = {} | |
hann_window = {} | |
class LogMelSpectrogram(torch.nn.Module): | |
def __init__(self, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
super().__init__() | |
self.melspctrogram = torchaudio.transforms.MelSpectrogram( | |
sample_rate=sampling_rate, | |
n_fft=n_fft, | |
win_length=win_size, | |
hop_length=hop_size, | |
center=center, | |
power=1.0, | |
norm="slaney", | |
onesided=True, | |
n_mels=num_mels, | |
mel_scale="slaney", | |
f_min=fmin, | |
f_max=fmax | |
) | |
self.n_fft = n_fft | |
self.hop_size = hop_size | |
def forward(self, wav): | |
wav = F.pad(wav, ((self.n_fft - self.hop_size) // 2, (self.n_fft - self.hop_size) // 2), "reflect") | |
mel = self.melspctrogram(wav) | |
logmel = torch.log(torch.clamp(mel, min=1e-5)) | |
return logmel | |
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
if torch.min(y) < -1.: | |
print('min value is ', torch.min(y)) | |
if torch.max(y) > 1.: | |
print('max value is ', torch.max(y)) | |
global mel_basis, hann_window | |
if fmax not in mel_basis: | |
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) | |
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device) | |
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device) | |
# print("Padding by", int((n_fft - hop_size)/2), y.shape) | |
# pre-padding | |
n_pad = hop_size - ( y.shape[1] % hop_size ) | |
y = F.pad(y.unsqueeze(1), (0, n_pad), mode='reflect').squeeze(1) | |
# print("intermediate:", y.shape) | |
y = F.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect') | |
y = y.squeeze(1) | |
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)], | |
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True) | |
spec = spec.abs().clamp_(3e-5) | |
# print("Post: ", y.shape, spec.shape) | |
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec) | |
spec = spectral_normalize_torch(spec) | |
return spec | |
def get_dataset_filelist(a): | |
train_df = pd.read_csv(a.input_training_file) | |
valid_df = pd.read_csv(a.input_validation_file) | |
return train_df, valid_df | |
class MelDataset(torch.utils.data.Dataset): | |
def __init__(self, training_files, segment_size, n_fft, num_mels, | |
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1, | |
device=None, fmax_loss=None, fine_tuning=False, audio_root_path=None, feat_root_path=None, use_alt_melcalc=False): | |
self.audio_files = training_files | |
if shuffle: | |
self.audio_files = self.audio_files.sample(frac=1, random_state=1234) | |
self.segment_size = segment_size | |
self.sampling_rate = sampling_rate | |
self.split = split | |
self.n_fft = n_fft | |
self.num_mels = num_mels | |
self.hop_size = hop_size | |
self.win_size = win_size | |
self.fmin = fmin | |
self.fmax = fmax | |
self.fmax_loss = fmax_loss | |
self.cached_wav = None | |
self.n_cache_reuse = n_cache_reuse | |
self._cache_ref_count = 0 | |
self.device = device | |
self.fine_tuning = fine_tuning | |
self.audio_root_path = Path(audio_root_path) | |
self.feat_root_path = Path(feat_root_path) | |
self.alt_melspec = LogMelSpectrogram(n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax) | |
self.use_alt_melcalc = use_alt_melcalc | |
def __getitem__(self, index): | |
row = self.audio_files.iloc[index] | |
if self._cache_ref_count == 0: | |
audio, sampling_rate = load_wav(self.audio_root_path/row.audio_path) | |
if not self.fine_tuning: | |
audio = normalize(audio) * 0.95 | |
self.cached_wav = audio | |
if sampling_rate != self.sampling_rate: | |
raise ValueError("{} SR doesn't match target {} SR".format( | |
sampling_rate, self.sampling_rate)) | |
self._cache_ref_count = self.n_cache_reuse | |
else: | |
audio = self.cached_wav | |
self._cache_ref_count -= 1 | |
audio = torch.tensor(audio, dtype=torch.float32) | |
audio = audio.unsqueeze(0) | |
if not self.fine_tuning: | |
if self.split: | |
if audio.size(1) >= self.segment_size: | |
max_audio_start = audio.size(1) - self.segment_size | |
audio_start = random.randint(0, max_audio_start) | |
audio = audio[:, audio_start:audio_start+self.segment_size] | |
else: | |
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') | |
if self.use_alt_melcalc: | |
mel = self.alt_melspec(audio) | |
else: | |
mel1 = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax, | |
center=False) | |
mel = mel.permute(0, 2, 1) # (1, dim, seq_len) --> (1, seq_len, dim) | |
else: | |
mel = torch.load(self.feat_root_path/row.feat_path, map_location='cpu').float() | |
if len(mel.shape) < 3: | |
mel = mel.unsqueeze(0) # (1, seq_len, dim) | |
if self.split: | |
frames_per_seg = math.ceil(self.segment_size / self.hop_size) | |
if audio.size(1) >= self.segment_size: | |
mel_start = random.randint(0, mel.size(1) - frames_per_seg - 1) | |
mel = mel[:, mel_start:mel_start + frames_per_seg, :] | |
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size] | |
else: | |
mel = torch.nn.functional.pad(mel, (0, 0, 0, frames_per_seg - mel.size(2)), 'constant') | |
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant') | |
if self.use_alt_melcalc: | |
mel_loss = self.alt_melspec(audio) | |
else: | |
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels, | |
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss, | |
center=False) | |
return (mel.squeeze(), audio.squeeze(0), str(row.audio_path), mel_loss.squeeze()) | |
def __len__(self): | |
return len(self.audio_files) | |