Spaces:
Running
Running
File size: 7,824 Bytes
c52280c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import math
import os
import random
from pathlib import Path
import librosa
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
import torch.utils.data
import torchaudio
from librosa.filters import mel as librosa_mel_fn
from librosa.util import normalize
from scipy.io.wavfile import read
def load_wav(full_path):
#sampling_rate, data = read(full_path)
#return data, sampling_rate
data, sampling_rate = librosa.load(full_path, sr=None)
return data, sampling_rate
def dynamic_range_compression(x, C=1, clip_val=1e-5):
return np.log(np.clip(x, a_min=clip_val, a_max=None) * C)
def dynamic_range_decompression(x, C=1):
return np.exp(x) / C
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression_torch(x, C=1):
return torch.exp(x) / C
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def spectral_de_normalize_torch(magnitudes):
output = dynamic_range_decompression_torch(magnitudes)
return output
mel_basis = {}
hann_window = {}
class LogMelSpectrogram(torch.nn.Module):
def __init__(self, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
super().__init__()
self.melspctrogram = torchaudio.transforms.MelSpectrogram(
sample_rate=sampling_rate,
n_fft=n_fft,
win_length=win_size,
hop_length=hop_size,
center=center,
power=1.0,
norm="slaney",
onesided=True,
n_mels=num_mels,
mel_scale="slaney",
f_min=fmin,
f_max=fmax
)
self.n_fft = n_fft
self.hop_size = hop_size
def forward(self, wav):
wav = F.pad(wav, ((self.n_fft - self.hop_size) // 2, (self.n_fft - self.hop_size) // 2), "reflect")
mel = self.melspctrogram(wav)
logmel = torch.log(torch.clamp(mel, min=1e-5))
return logmel
def mel_spectrogram(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
if torch.min(y) < -1.:
print('min value is ', torch.min(y))
if torch.max(y) > 1.:
print('max value is ', torch.max(y))
global mel_basis, hann_window
if fmax not in mel_basis:
mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax)
mel_basis[str(fmax)+'_'+str(y.device)] = torch.from_numpy(mel).float().to(y.device)
hann_window[str(y.device)] = torch.hann_window(win_size).to(y.device)
# print("Padding by", int((n_fft - hop_size)/2), y.shape)
# pre-padding
n_pad = hop_size - ( y.shape[1] % hop_size )
y = F.pad(y.unsqueeze(1), (0, n_pad), mode='reflect').squeeze(1)
# print("intermediate:", y.shape)
y = F.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
y = y.squeeze(1)
spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[str(y.device)],
center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=True)
spec = spec.abs().clamp_(3e-5)
# print("Post: ", y.shape, spec.shape)
spec = torch.matmul(mel_basis[str(fmax)+'_'+str(y.device)], spec)
spec = spectral_normalize_torch(spec)
return spec
def get_dataset_filelist(a):
train_df = pd.read_csv(a.input_training_file)
valid_df = pd.read_csv(a.input_validation_file)
return train_df, valid_df
class MelDataset(torch.utils.data.Dataset):
def __init__(self, training_files, segment_size, n_fft, num_mels,
hop_size, win_size, sampling_rate, fmin, fmax, split=True, shuffle=True, n_cache_reuse=1,
device=None, fmax_loss=None, fine_tuning=False, audio_root_path=None, feat_root_path=None, use_alt_melcalc=False):
self.audio_files = training_files
if shuffle:
self.audio_files = self.audio_files.sample(frac=1, random_state=1234)
self.segment_size = segment_size
self.sampling_rate = sampling_rate
self.split = split
self.n_fft = n_fft
self.num_mels = num_mels
self.hop_size = hop_size
self.win_size = win_size
self.fmin = fmin
self.fmax = fmax
self.fmax_loss = fmax_loss
self.cached_wav = None
self.n_cache_reuse = n_cache_reuse
self._cache_ref_count = 0
self.device = device
self.fine_tuning = fine_tuning
self.audio_root_path = Path(audio_root_path)
self.feat_root_path = Path(feat_root_path)
self.alt_melspec = LogMelSpectrogram(n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax)
self.use_alt_melcalc = use_alt_melcalc
def __getitem__(self, index):
row = self.audio_files.iloc[index]
if self._cache_ref_count == 0:
audio, sampling_rate = load_wav(self.audio_root_path/row.audio_path)
if not self.fine_tuning:
audio = normalize(audio) * 0.95
self.cached_wav = audio
if sampling_rate != self.sampling_rate:
raise ValueError("{} SR doesn't match target {} SR".format(
sampling_rate, self.sampling_rate))
self._cache_ref_count = self.n_cache_reuse
else:
audio = self.cached_wav
self._cache_ref_count -= 1
audio = torch.tensor(audio, dtype=torch.float32)
audio = audio.unsqueeze(0)
if not self.fine_tuning:
if self.split:
if audio.size(1) >= self.segment_size:
max_audio_start = audio.size(1) - self.segment_size
audio_start = random.randint(0, max_audio_start)
audio = audio[:, audio_start:audio_start+self.segment_size]
else:
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel = self.alt_melspec(audio)
else:
mel1 = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax,
center=False)
mel = mel.permute(0, 2, 1) # (1, dim, seq_len) --> (1, seq_len, dim)
else:
mel = torch.load(self.feat_root_path/row.feat_path, map_location='cpu').float()
if len(mel.shape) < 3:
mel = mel.unsqueeze(0) # (1, seq_len, dim)
if self.split:
frames_per_seg = math.ceil(self.segment_size / self.hop_size)
if audio.size(1) >= self.segment_size:
mel_start = random.randint(0, mel.size(1) - frames_per_seg - 1)
mel = mel[:, mel_start:mel_start + frames_per_seg, :]
audio = audio[:, mel_start * self.hop_size:(mel_start + frames_per_seg) * self.hop_size]
else:
mel = torch.nn.functional.pad(mel, (0, 0, 0, frames_per_seg - mel.size(2)), 'constant')
audio = torch.nn.functional.pad(audio, (0, self.segment_size - audio.size(1)), 'constant')
if self.use_alt_melcalc:
mel_loss = self.alt_melspec(audio)
else:
mel_loss = mel_spectrogram(audio, self.n_fft, self.num_mels,
self.sampling_rate, self.hop_size, self.win_size, self.fmin, self.fmax_loss,
center=False)
return (mel.squeeze(), audio.squeeze(0), str(row.audio_path), mel_loss.squeeze())
def __len__(self):
return len(self.audio_files)
|