Spaces:
Sleeping
Sleeping
import sys | |
import os | |
import OpenGL.GL as gl | |
os.environ["PYOPENGL_PLATFORM"] = "egl" | |
sys.argv = ['VQ-Trans/GPT_eval_multi.py'] | |
os.makedirs('output', exist_ok=True) | |
os.chdir('VQ-Trans') | |
os.makedirs('checkpoints', exist_ok=True) | |
os.system('gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view -O checkpoints') | |
os.system('gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view -O checkpoints') | |
os.system('unzip checkpoints/t2m.zip') | |
os.system('unzip checkpoints/kit.zip') | |
os.system('rm checkpoints/t2m.zip') | |
os.system('rm checkpoints/kit.zip') | |
sys.path.append('/home/user/app/VQ-Trans') | |
import options.option_transformer as option_trans | |
from huggingface_hub import snapshot_download | |
model_path = snapshot_download(repo_id="vumichien/T2M-GPT") | |
args = option_trans.get_args_parser() | |
args.dataname = 't2m' | |
args.resume_pth = f'{model_path}/VQVAE/net_last.pth' | |
args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth' | |
args.down_t = 2 | |
args.depth = 3 | |
args.block_size = 51 | |
import clip | |
import torch | |
import numpy as np | |
import models.vqvae as vqvae | |
import models.t2m_trans as trans | |
from utils.motion_process import recover_from_ric | |
import visualization.plot_3d_global as plot_3d | |
from models.rotation2xyz import Rotation2xyz | |
import numpy as np | |
from trimesh import Trimesh | |
import gc | |
import torch | |
from visualize.simplify_loc2rot import joints2smpl | |
import pyrender | |
# import matplotlib.pyplot as plt | |
import io | |
import imageio | |
from shapely import geometry | |
import trimesh | |
from pyrender.constants import RenderFlags | |
import math | |
# import ffmpeg | |
# from PIL import Image | |
import hashlib | |
import gradio as gr | |
## load clip model and datasets | |
is_cuda = torch.cuda.is_available() | |
device = torch.device("cuda" if is_cuda else "cpu") | |
print(device) | |
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') # Must set jit=False for training | |
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16 | |
clip_model.eval() | |
for p in clip_model.parameters(): | |
p.requires_grad = False | |
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers | |
args.nb_code, | |
args.code_dim, | |
args.output_emb_width, | |
args.down_t, | |
args.stride_t, | |
args.width, | |
args.depth, | |
args.dilation_growth_rate) | |
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, | |
embed_dim=1024, | |
clip_dim=args.clip_dim, | |
block_size=args.block_size, | |
num_layers=9, | |
n_head=16, | |
drop_out_rate=args.drop_out_rate, | |
fc_rate=args.ff_rate) | |
print('loading checkpoint from {}'.format(args.resume_pth)) | |
ckpt = torch.load(args.resume_pth, map_location='cpu') | |
net.load_state_dict(ckpt['net'], strict=True) | |
net.eval() | |
print('loading transformer checkpoint from {}'.format(args.resume_trans)) | |
ckpt = torch.load(args.resume_trans, map_location='cpu') | |
trans_encoder.load_state_dict(ckpt['trans'], strict=True) | |
trans_encoder.eval() | |
mean = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy')) | |
std = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy')) | |
if is_cuda: | |
net.cuda() | |
trans_encoder.cuda() | |
mean = mean.cuda() | |
std = std.cuda() | |
def render(motions, device_id=0, name='test_vis'): | |
frames, njoints, nfeats = motions.shape | |
MINS = motions.min(axis=0).min(axis=0) | |
MAXS = motions.max(axis=0).max(axis=0) | |
height_offset = MINS[1] | |
motions[:, :, 1] -= height_offset | |
trajec = motions[:, 0, [0, 2]] | |
is_cuda = torch.cuda.is_available() | |
# device = torch.device("cuda" if is_cuda else "cpu") | |
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda) | |
rot2xyz = Rotation2xyz(device=device) | |
faces = rot2xyz.smpl_model.faces | |
if not os.path.exists(f'output/{name}_pred.pt'): | |
print(f'Running SMPLify, it may take a few minutes.') | |
motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3] | |
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None, | |
pose_rep='rot6d', translation=True, glob=True, | |
jointstype='vertices', | |
vertstrans=True) | |
vertices = vertices.detach().cpu() | |
torch.save(vertices, f'output/{name}_pred.pt') | |
else: | |
vertices = torch.load(f'output/{name}_pred.pt') | |
frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints | |
print(vertices.shape) | |
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0] | |
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0] | |
out_list = [] | |
minx = MINS[0] - 0.5 | |
maxx = MAXS[0] + 0.5 | |
minz = MINS[2] - 0.5 | |
maxz = MAXS[2] + 0.5 | |
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]]) | |
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) | |
vid = [] | |
for i in range(frames): | |
if i % 10 == 0: | |
print(i) | |
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces) | |
base_color = (0.11, 0.53, 0.8, 0.5) | |
## OPAQUE rendering without alpha | |
## BLEND rendering consider alpha | |
material = pyrender.MetallicRoughnessMaterial( | |
metallicFactor=0.7, | |
alphaMode='OPAQUE', | |
baseColorFactor=base_color | |
) | |
mesh = pyrender.Mesh.from_trimesh(mesh, material=material) | |
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] | |
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False) | |
bg_color = [1, 1, 1, 0.8] | |
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4)) | |
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10] | |
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)) | |
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300) | |
scene.add(mesh) | |
c = np.pi / 2 | |
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0], | |
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()], | |
[ 0, np.sin(c), np.cos(c), 0], | |
[ 0, 0, 0, 1]])) | |
light_pose = np.eye(4) | |
light_pose[:3, 3] = [0, -1, 1] | |
scene.add(light, pose=light_pose.copy()) | |
light_pose[:3, 3] = [0, 1, 1] | |
scene.add(light, pose=light_pose.copy()) | |
light_pose[:3, 3] = [1, 1, 2] | |
scene.add(light, pose=light_pose.copy()) | |
c = -np.pi / 6 | |
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2], | |
[ 0, np.cos(c), -np.sin(c), 1.5], | |
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())], | |
[ 0, 0, 0, 1] | |
]) | |
# render scene | |
r = pyrender.OffscreenRenderer(960, 960) | |
color, _ = r.render(scene, flags=RenderFlags.RGBA) | |
# Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png') | |
vid.append(color) | |
r.delete() | |
out = np.stack(vid, axis=0) | |
imageio.mimwrite(f'output/results.gif', out, fps=20) | |
del out, vertices | |
return f'output/results.gif' | |
def predict(clip_text, method='fast'): | |
gc.collect() | |
if torch.cuda.is_available(): | |
text = clip.tokenize([clip_text], truncate=True).cuda() | |
else: | |
text = clip.tokenize([clip_text], truncate=True) | |
feat_clip_text = clip_model.encode_text(text).float() | |
index_motion = trans_encoder.sample(feat_clip_text[0:1], False) | |
pred_pose = net.forward_decoder(index_motion) | |
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22) | |
output_name = hashlib.md5(clip_text.encode()).hexdigest() | |
if method == 'fast': | |
xyz = pred_xyz.reshape(1, -1, 22, 3) | |
pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif']) | |
return f'output/results.gif' | |
elif method == 'slow': | |
output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name) | |
return output_path | |
# ---- Gradio Layout ----- | |
text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True) | |
video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False) | |
demo = gr.Blocks() | |
demo.encrypt = False | |
with demo: | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Generating Human Motion from Textual Descriptions with Discrete Representations (T2M-GPT)</h1> | |
This space uses <a href='https://mael-zys.github.io/T2M-GPT/' target='_blank'><b>T2M-GPT models</b></a> based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions🤗 | |
</div> | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### Generate human motion by **T2M-GPT** | |
##### Step 1. Give prompt text describing human motion | |
##### Step 2. Choice method to generate output (Fast: Sketch skeleton; Slow: SMPL mesh) | |
##### Step 3. Generate output and enjoy | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### You can test by following examples: | |
''') | |
examples = gr.Examples(examples= | |
[ "a person jogs in place, slowly at first, then increases speed. they then back up and squat down.", | |
"a man steps forward and does a handstand", | |
"a man rises from the ground, walks in a circle and sits back down on the ground"], | |
label="Examples", inputs=[text_prompt]) | |
with gr.Column(): | |
with gr.Row(): | |
text_prompt.render() | |
method = gr.Dropdown(["slow", "fast"], label="Method", value="fast") | |
with gr.Row(): | |
generate_btn = gr.Button("Generate") | |
generate_btn.click(predict, [text_prompt, method], [video_out]) | |
print(video_out) | |
with gr.Row(): | |
video_out.render() | |
demo.launch(debug=True) | |