Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import os
|
3 |
+
import OpenGL.GL as gl
|
4 |
+
os.environ["PYOPENGL_PLATFORM"] = "egl"
|
5 |
+
sys.argv = ['VQ-Trans/GPT_eval_multi.py']
|
6 |
+
os.makedirs('output', exist_ok=True)
|
7 |
+
os.chdir('VQ-Trans')
|
8 |
+
os.makedirs('checkpoints', exist_ok=True)
|
9 |
+
os.system('gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view -O checkpoints')
|
10 |
+
os.system('gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view -O checkpoints')
|
11 |
+
os.system('unzip checkpoints/t2m.zip')
|
12 |
+
os.system('unzip checkpoints/kit.zip')
|
13 |
+
os.system('rm checkpoints/t2m.zip')
|
14 |
+
os.system('rm checkpoints/kit.zip')
|
15 |
+
sys.path.append('/home/user/app/VQ-Trans')
|
16 |
+
|
17 |
+
import options.option_transformer as option_trans
|
18 |
+
from huggingface_hub import snapshot_download
|
19 |
+
model_path = snapshot_download(repo_id="vumichien/T2M-GPT")
|
20 |
+
|
21 |
+
args = option_trans.get_args_parser()
|
22 |
+
|
23 |
+
args.dataname = 't2m'
|
24 |
+
args.resume_pth = f'{model_path}/VQVAE/net_last.pth'
|
25 |
+
args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth'
|
26 |
+
args.down_t = 2
|
27 |
+
args.depth = 3
|
28 |
+
args.block_size = 51
|
29 |
+
|
30 |
+
import clip
|
31 |
+
import torch
|
32 |
+
import numpy as np
|
33 |
+
import models.vqvae as vqvae
|
34 |
+
import models.t2m_trans as trans
|
35 |
+
from utils.motion_process import recover_from_ric
|
36 |
+
import visualization.plot_3d_global as plot_3d
|
37 |
+
from models.rotation2xyz import Rotation2xyz
|
38 |
+
import numpy as np
|
39 |
+
from trimesh import Trimesh
|
40 |
+
import gc
|
41 |
+
|
42 |
+
import torch
|
43 |
+
from visualize.simplify_loc2rot import joints2smpl
|
44 |
+
import pyrender
|
45 |
+
# import matplotlib.pyplot as plt
|
46 |
+
|
47 |
+
import io
|
48 |
+
import imageio
|
49 |
+
from shapely import geometry
|
50 |
+
import trimesh
|
51 |
+
from pyrender.constants import RenderFlags
|
52 |
+
import math
|
53 |
+
# import ffmpeg
|
54 |
+
# from PIL import Image
|
55 |
+
import hashlib
|
56 |
+
import gradio as gr
|
57 |
+
|
58 |
+
## load clip model and datasets
|
59 |
+
is_cuda = torch.cuda.is_available()
|
60 |
+
device = torch.device("cuda" if is_cuda else "cpu")
|
61 |
+
print(device)
|
62 |
+
clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') # Must set jit=False for training
|
63 |
+
clip.model.convert_weights(clip_model) # Actually this line is unnecessary since clip by default already on float16
|
64 |
+
clip_model.eval()
|
65 |
+
for p in clip_model.parameters():
|
66 |
+
p.requires_grad = False
|
67 |
+
|
68 |
+
net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers
|
69 |
+
args.nb_code,
|
70 |
+
args.code_dim,
|
71 |
+
args.output_emb_width,
|
72 |
+
args.down_t,
|
73 |
+
args.stride_t,
|
74 |
+
args.width,
|
75 |
+
args.depth,
|
76 |
+
args.dilation_growth_rate)
|
77 |
+
|
78 |
+
|
79 |
+
trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code,
|
80 |
+
embed_dim=1024,
|
81 |
+
clip_dim=args.clip_dim,
|
82 |
+
block_size=args.block_size,
|
83 |
+
num_layers=9,
|
84 |
+
n_head=16,
|
85 |
+
drop_out_rate=args.drop_out_rate,
|
86 |
+
fc_rate=args.ff_rate)
|
87 |
+
|
88 |
+
|
89 |
+
print('loading checkpoint from {}'.format(args.resume_pth))
|
90 |
+
ckpt = torch.load(args.resume_pth, map_location='cpu')
|
91 |
+
net.load_state_dict(ckpt['net'], strict=True)
|
92 |
+
net.eval()
|
93 |
+
|
94 |
+
print('loading transformer checkpoint from {}'.format(args.resume_trans))
|
95 |
+
ckpt = torch.load(args.resume_trans, map_location='cpu')
|
96 |
+
trans_encoder.load_state_dict(ckpt['trans'], strict=True)
|
97 |
+
trans_encoder.eval()
|
98 |
+
mean = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy'))
|
99 |
+
std = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy'))
|
100 |
+
if is_cuda:
|
101 |
+
net.cuda()
|
102 |
+
trans_encoder.cuda()
|
103 |
+
mean = mean.cuda()
|
104 |
+
std = std.cuda()
|
105 |
+
|
106 |
+
|
107 |
+
def render(motions, device_id=0, name='test_vis'):
|
108 |
+
frames, njoints, nfeats = motions.shape
|
109 |
+
MINS = motions.min(axis=0).min(axis=0)
|
110 |
+
MAXS = motions.max(axis=0).max(axis=0)
|
111 |
+
|
112 |
+
height_offset = MINS[1]
|
113 |
+
motions[:, :, 1] -= height_offset
|
114 |
+
trajec = motions[:, 0, [0, 2]]
|
115 |
+
is_cuda = torch.cuda.is_available()
|
116 |
+
# device = torch.device("cuda" if is_cuda else "cpu")
|
117 |
+
j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda)
|
118 |
+
rot2xyz = Rotation2xyz(device=device)
|
119 |
+
faces = rot2xyz.smpl_model.faces
|
120 |
+
|
121 |
+
if not os.path.exists(f'output/{name}_pred.pt'):
|
122 |
+
print(f'Running SMPLify, it may take a few minutes.')
|
123 |
+
motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3]
|
124 |
+
|
125 |
+
vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None,
|
126 |
+
pose_rep='rot6d', translation=True, glob=True,
|
127 |
+
jointstype='vertices',
|
128 |
+
vertstrans=True)
|
129 |
+
vertices = vertices.detach().cpu()
|
130 |
+
torch.save(vertices, f'output/{name}_pred.pt')
|
131 |
+
else:
|
132 |
+
vertices = torch.load(f'output/{name}_pred.pt')
|
133 |
+
frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints
|
134 |
+
print(vertices.shape)
|
135 |
+
MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0]
|
136 |
+
MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0]
|
137 |
+
|
138 |
+
out_list = []
|
139 |
+
|
140 |
+
minx = MINS[0] - 0.5
|
141 |
+
maxx = MAXS[0] + 0.5
|
142 |
+
minz = MINS[2] - 0.5
|
143 |
+
maxz = MAXS[2] + 0.5
|
144 |
+
polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]])
|
145 |
+
polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5)
|
146 |
+
|
147 |
+
vid = []
|
148 |
+
for i in range(frames):
|
149 |
+
if i % 10 == 0:
|
150 |
+
print(i)
|
151 |
+
|
152 |
+
mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces)
|
153 |
+
|
154 |
+
base_color = (0.11, 0.53, 0.8, 0.5)
|
155 |
+
## OPAQUE rendering without alpha
|
156 |
+
## BLEND rendering consider alpha
|
157 |
+
material = pyrender.MetallicRoughnessMaterial(
|
158 |
+
metallicFactor=0.7,
|
159 |
+
alphaMode='OPAQUE',
|
160 |
+
baseColorFactor=base_color
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
+
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
|
165 |
+
|
166 |
+
polygon_mesh.visual.face_colors = [0, 0, 0, 0.21]
|
167 |
+
polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False)
|
168 |
+
|
169 |
+
bg_color = [1, 1, 1, 0.8]
|
170 |
+
scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4))
|
171 |
+
|
172 |
+
sx, sy, tx, ty = [0.75, 0.75, 0, 0.10]
|
173 |
+
|
174 |
+
camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0))
|
175 |
+
|
176 |
+
light = pyrender.DirectionalLight(color=[1,1,1], intensity=300)
|
177 |
+
|
178 |
+
scene.add(mesh)
|
179 |
+
|
180 |
+
c = np.pi / 2
|
181 |
+
|
182 |
+
scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0],
|
183 |
+
|
184 |
+
[ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()],
|
185 |
+
|
186 |
+
[ 0, np.sin(c), np.cos(c), 0],
|
187 |
+
|
188 |
+
[ 0, 0, 0, 1]]))
|
189 |
+
|
190 |
+
light_pose = np.eye(4)
|
191 |
+
light_pose[:3, 3] = [0, -1, 1]
|
192 |
+
scene.add(light, pose=light_pose.copy())
|
193 |
+
|
194 |
+
light_pose[:3, 3] = [0, 1, 1]
|
195 |
+
scene.add(light, pose=light_pose.copy())
|
196 |
+
|
197 |
+
light_pose[:3, 3] = [1, 1, 2]
|
198 |
+
scene.add(light, pose=light_pose.copy())
|
199 |
+
|
200 |
+
|
201 |
+
c = -np.pi / 6
|
202 |
+
|
203 |
+
scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2],
|
204 |
+
|
205 |
+
[ 0, np.cos(c), -np.sin(c), 1.5],
|
206 |
+
|
207 |
+
[ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())],
|
208 |
+
|
209 |
+
[ 0, 0, 0, 1]
|
210 |
+
])
|
211 |
+
|
212 |
+
# render scene
|
213 |
+
r = pyrender.OffscreenRenderer(960, 960)
|
214 |
+
|
215 |
+
color, _ = r.render(scene, flags=RenderFlags.RGBA)
|
216 |
+
# Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png')
|
217 |
+
|
218 |
+
vid.append(color)
|
219 |
+
|
220 |
+
r.delete()
|
221 |
+
|
222 |
+
out = np.stack(vid, axis=0)
|
223 |
+
imageio.mimwrite(f'output/results.gif', out, fps=20)
|
224 |
+
del out, vertices
|
225 |
+
return f'output/results.gif'
|
226 |
+
|
227 |
+
def predict(clip_text, method='fast'):
|
228 |
+
gc.collect()
|
229 |
+
if torch.cuda.is_available():
|
230 |
+
text = clip.tokenize([clip_text], truncate=True).cuda()
|
231 |
+
else:
|
232 |
+
text = clip.tokenize([clip_text], truncate=True)
|
233 |
+
feat_clip_text = clip_model.encode_text(text).float()
|
234 |
+
index_motion = trans_encoder.sample(feat_clip_text[0:1], False)
|
235 |
+
pred_pose = net.forward_decoder(index_motion)
|
236 |
+
pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22)
|
237 |
+
output_name = hashlib.md5(clip_text.encode()).hexdigest()
|
238 |
+
if method == 'fast':
|
239 |
+
xyz = pred_xyz.reshape(1, -1, 22, 3)
|
240 |
+
pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif'])
|
241 |
+
return f'output/results.gif'
|
242 |
+
elif method == 'slow':
|
243 |
+
output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name)
|
244 |
+
return output_path
|
245 |
+
|
246 |
+
|
247 |
+
# ---- Gradio Layout -----
|
248 |
+
text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True)
|
249 |
+
video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False)
|
250 |
+
demo = gr.Blocks()
|
251 |
+
demo.encrypt = False
|
252 |
+
|
253 |
+
with demo:
|
254 |
+
gr.Markdown('''
|
255 |
+
<div>
|
256 |
+
<h1 style='text-align: center'>Generating Human Motion from Textual Descriptions with Discrete Representations (T2M-GPT)</h1>
|
257 |
+
This space uses <a href='https://mael-zys.github.io/T2M-GPT/' target='_blank'><b>T2M-GPT models</b></a> based on Vector Quantised-Variational AutoEncoder (VQ-VAE) and Generative Pre-trained Transformer (GPT) for human motion generation from textural descriptions🤗
|
258 |
+
</div>
|
259 |
+
''')
|
260 |
+
with gr.Row():
|
261 |
+
gr.Markdown('''
|
262 |
+
### Generate human motion by **T2M-GPT**
|
263 |
+
##### Step 1. Give prompt text describing human motion
|
264 |
+
##### Step 2. Choice method to generate output (Fast: Sketch skeleton; Slow: SMPL mesh)
|
265 |
+
##### Step 3. Generate output and enjoy
|
266 |
+
''')
|
267 |
+
with gr.Row():
|
268 |
+
gr.Markdown('''
|
269 |
+
### You can test by following examples:
|
270 |
+
''')
|
271 |
+
examples = gr.Examples(examples=
|
272 |
+
[ "a person jogs in place, slowly at first, then increases speed. they then back up and squat down.",
|
273 |
+
"a man steps forward and does a handstand",
|
274 |
+
"a man rises from the ground, walks in a circle and sits back down on the ground"],
|
275 |
+
label="Examples", inputs=[text_prompt])
|
276 |
+
|
277 |
+
with gr.Column():
|
278 |
+
with gr.Row():
|
279 |
+
text_prompt.render()
|
280 |
+
method = gr.Dropdown(["slow", "fast"], label="Method", value="fast")
|
281 |
+
with gr.Row():
|
282 |
+
generate_btn = gr.Button("Generate")
|
283 |
+
generate_btn.click(predict, [text_prompt, method], [video_out])
|
284 |
+
print(video_out)
|
285 |
+
with gr.Row():
|
286 |
+
video_out.render()
|
287 |
+
|
288 |
+
demo.launch(debug=True)
|