Update app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,15 @@ from speechbrain.inference.interfaces import Pretrained, foreign_class
|
|
8 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
9 |
import librosa
|
10 |
import whisper_timestamped as whisper
|
|
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
torch.backends.cuda.matmul.allow_tf32 = True
|
14 |
|
15 |
-
|
16 |
def clean_up_memory():
|
17 |
gc.collect()
|
18 |
torch.cuda.empty_cache()
|
19 |
|
20 |
-
|
21 |
@spaces.GPU(duration=15)
|
22 |
def recap_sentence(string):
|
23 |
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
|
@@ -25,30 +24,69 @@ def recap_sentence(string):
|
|
25 |
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
|
26 |
return recap_result
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
@spaces.GPU(duration=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def return_prediction_whisper_file(file=None, device=device):
|
|
|
31 |
if file is not None:
|
32 |
-
|
33 |
-
|
34 |
-
except Exception as e:
|
35 |
-
return f"Error loading the audio file: {str(e)}"
|
36 |
-
|
37 |
-
waveform = waveform[:3600 * sr]
|
38 |
whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device)
|
39 |
else:
|
40 |
-
|
41 |
-
|
42 |
recap_result = ""
|
43 |
prev_segment = ""
|
44 |
prev_segment_len = 0
|
45 |
|
|
|
46 |
for segment in whisper_result:
|
|
|
47 |
if prev_segment == "":
|
48 |
recap_segment = recap_sentence(segment[0])
|
49 |
else:
|
50 |
prev_segment_len = len(prev_segment.split())
|
51 |
recap_segment = recap_sentence(prev_segment + " " + segment[0])
|
|
|
52 |
recap_segment = recap_segment.split()
|
53 |
recap_segment = recap_segment[prev_segment_len:]
|
54 |
recap_segment = " ".join(recap_segment)
|
@@ -56,62 +94,89 @@ def return_prediction_whisper_file(file=None, device=device):
|
|
56 |
recap_result += recap_segment + " "
|
57 |
|
58 |
for i, letter in enumerate(recap_result):
|
59 |
-
if i > 1 and recap_result[i
|
60 |
-
recap_result = recap_result[:i] + letter.upper() + recap_result[i
|
61 |
|
62 |
-
|
63 |
-
return recap_result
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
-
# Load the models
|
67 |
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
68 |
whisper_classifier = whisper_classifier.to(device)
|
69 |
whisper_classifier.eval()
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
|
72 |
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
|
73 |
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
|
74 |
recap_model.to(device)
|
75 |
recap_model.eval()
|
76 |
|
77 |
-
#
|
78 |
mic_transcribe_whisper = gr.Interface(
|
79 |
-
fn=
|
80 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
81 |
outputs=gr.Textbox(),
|
82 |
allow_flagging="never",
|
83 |
live=False,
|
84 |
)
|
85 |
|
86 |
-
|
87 |
-
fn=
|
88 |
-
inputs=gr.
|
89 |
-
outputs=gr.Textbox(
|
90 |
allow_flagging="never",
|
91 |
live=True
|
92 |
)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
project_description = '''
|
95 |
<img src="https://i.ibb.co/SKDfwn9/bookie.png"
|
96 |
alt="Bookie logo"
|
97 |
style="float: right; width: 130px; height: 110px; margin-left: 10px;" />
|
98 |
-
|
99 |
-
##
|
100 |
1. **Дејан Порјазовски**
|
101 |
2. **Илина Јакимовска**
|
102 |
3. **Ордан Чукалиев**
|
103 |
4. **Никола Стиков**
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
109 |
'''
|
110 |
|
111 |
# Custom CSS
|
112 |
css = """
|
113 |
.gradio-container {
|
114 |
-
background-color: #f0f0f0;
|
115 |
}
|
116 |
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a {
|
117 |
font-size: 15px !important;
|
@@ -122,15 +187,22 @@ css = """
|
|
122 |
}
|
123 |
"""
|
124 |
|
125 |
-
transcriber_app = gr.Blocks(css=css)
|
126 |
-
|
127 |
with transcriber_app:
|
|
|
128 |
gr.Markdown(project_description, elem_classes="custom-markdown")
|
|
|
129 |
gr.TabbedInterface(
|
130 |
-
[mic_transcribe_whisper,
|
131 |
-
["
|
132 |
)
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
if __name__ == "__main__":
|
135 |
transcriber_app.queue()
|
136 |
-
transcriber_app.launch(share=True)
|
|
|
8 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
9 |
import librosa
|
10 |
import whisper_timestamped as whisper
|
11 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor
|
12 |
|
13 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
torch.backends.cuda.matmul.allow_tf32 = True
|
15 |
|
|
|
16 |
def clean_up_memory():
|
17 |
gc.collect()
|
18 |
torch.cuda.empty_cache()
|
19 |
|
|
|
20 |
@spaces.GPU(duration=15)
|
21 |
def recap_sentence(string):
|
22 |
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
|
|
|
24 |
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
|
25 |
return recap_result
|
26 |
|
27 |
+
@spaces.GPU(duration=30)
|
28 |
+
def return_prediction_w2v2(mic=None, file=None, device=device):
|
29 |
+
if mic is not None:
|
30 |
+
waveform, sr = librosa.load(mic, sr=16000)
|
31 |
+
waveform = waveform[:60*sr]
|
32 |
+
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
|
33 |
+
elif file is not None:
|
34 |
+
waveform, sr = librosa.load(file, sr=16000)
|
35 |
+
waveform = waveform[:60*sr]
|
36 |
+
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
|
37 |
+
else:
|
38 |
+
return "You must either provide a mic recording or a file"
|
39 |
+
|
40 |
+
recap_result = recap_sentence(w2v2_result[0])
|
41 |
+
|
42 |
+
for i, letter in enumerate(recap_result):
|
43 |
+
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
44 |
+
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
45 |
+
|
46 |
+
clean_up_memory()
|
47 |
+
return recap_result
|
48 |
|
49 |
@spaces.GPU(duration=30)
|
50 |
+
def return_prediction_whisper_mic(mic=None, device=device):
|
51 |
+
if mic is not None:
|
52 |
+
waveform, sr = librosa.load(mic, sr=16000)
|
53 |
+
waveform = waveform[:30*sr]
|
54 |
+
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
|
55 |
+
else:
|
56 |
+
return "You must provide a mic recording"
|
57 |
+
|
58 |
+
recap_result = recap_sentence(whisper_result[0])
|
59 |
+
|
60 |
+
for i, letter in enumerate(recap_result):
|
61 |
+
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
62 |
+
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
63 |
+
|
64 |
+
clean_up_memory()
|
65 |
+
return recap_result
|
66 |
+
|
67 |
+
@spaces.GPU(duration=60)
|
68 |
def return_prediction_whisper_file(file=None, device=device):
|
69 |
+
whisper_result = []
|
70 |
if file is not None:
|
71 |
+
waveform, sr = librosa.load(file, sr=16000)
|
72 |
+
waveform = waveform[:3600*sr]
|
|
|
|
|
|
|
|
|
73 |
whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device)
|
74 |
else:
|
75 |
+
yield "You must provide a file"
|
76 |
+
|
77 |
recap_result = ""
|
78 |
prev_segment = ""
|
79 |
prev_segment_len = 0
|
80 |
|
81 |
+
segment_counter = 0
|
82 |
for segment in whisper_result:
|
83 |
+
segment_counter += 1
|
84 |
if prev_segment == "":
|
85 |
recap_segment = recap_sentence(segment[0])
|
86 |
else:
|
87 |
prev_segment_len = len(prev_segment.split())
|
88 |
recap_segment = recap_sentence(prev_segment + " " + segment[0])
|
89 |
+
|
90 |
recap_segment = recap_segment.split()
|
91 |
recap_segment = recap_segment[prev_segment_len:]
|
92 |
recap_segment = " ".join(recap_segment)
|
|
|
94 |
recap_result += recap_segment + " "
|
95 |
|
96 |
for i, letter in enumerate(recap_result):
|
97 |
+
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
98 |
+
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
99 |
|
100 |
+
yield recap_result
|
|
|
101 |
|
102 |
+
return_prediction_whisper_mic_with_device = partial(return_prediction_whisper_mic, device=device)
|
103 |
+
return_prediction_whisper_file_with_device = partial(return_prediction_whisper_file, device=device)
|
104 |
+
return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device)
|
105 |
|
106 |
+
# Load the ASR models
|
107 |
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
108 |
whisper_classifier = whisper_classifier.to(device)
|
109 |
whisper_classifier.eval()
|
110 |
|
111 |
+
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
112 |
+
w2v2_classifier = w2v2_classifier.to(device)
|
113 |
+
w2v2_classifier.eval()
|
114 |
+
|
115 |
+
# Load the T5 tokenizer and model
|
116 |
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
|
117 |
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
|
118 |
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
|
119 |
recap_model.to(device)
|
120 |
recap_model.eval()
|
121 |
|
122 |
+
# Interface definitions
|
123 |
mic_transcribe_whisper = gr.Interface(
|
124 |
+
fn=return_prediction_whisper_mic_with_device,
|
125 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
126 |
outputs=gr.Textbox(),
|
127 |
allow_flagging="never",
|
128 |
live=False,
|
129 |
)
|
130 |
|
131 |
+
file_transcribe_whisper = gr.Interface(
|
132 |
+
fn=return_prediction_whisper_file_with_device,
|
133 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
134 |
+
outputs=gr.Textbox(),
|
135 |
allow_flagging="never",
|
136 |
live=True
|
137 |
)
|
138 |
|
139 |
+
mic_transcribe_w2v2 = gr.Interface(
|
140 |
+
fn=return_prediction_w2v2_with_device,
|
141 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
142 |
+
outputs=gr.Textbox(),
|
143 |
+
allow_flagging="never",
|
144 |
+
live=False,
|
145 |
+
)
|
146 |
+
|
147 |
+
file_transcribe_w2v2 = gr.Interface(
|
148 |
+
fn=return_prediction_w2v2_with_device,
|
149 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
150 |
+
outputs=gr.Textbox(),
|
151 |
+
allow_flagging="never",
|
152 |
+
live=False
|
153 |
+
)
|
154 |
+
|
155 |
project_description = '''
|
156 |
<img src="https://i.ibb.co/SKDfwn9/bookie.png"
|
157 |
alt="Bookie logo"
|
158 |
style="float: right; width: 130px; height: 110px; margin-left: 10px;" />
|
159 |
+
|
160 |
+
## Автори:
|
161 |
1. **Дејан Порјазовски**
|
162 |
2. **Илина Јакимовска**
|
163 |
3. **Ордан Чукалиев**
|
164 |
4. **Никола Стиков**
|
165 |
+
Оваа колаборација е дел од активностите на **Центарот за напредни интердисциплинарни истражувања ([ЦеНИИс](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** при УКИМ.
|
166 |
+
## Во тренирањето на овој модел се употребени податоци од:
|
167 |
+
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
|
168 |
+
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум"](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
|
169 |
+
3. Аудио подкастот [„Обични луѓе"](https://obicniluge.mk/episodes/) на Илина Јакимовска
|
170 |
+
4. Научните видеа од серијалот [„Наука за деца"](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/)
|
171 |
+
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0)
|
172 |
+
## Како да придонесете за подобрување на македонските модели за препознавање на говор?
|
173 |
+
На следниот [линк](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing) ќе најдете инструкции за тоа како да донирате македонски говор преку платформата Mozilla Common Voice.
|
174 |
'''
|
175 |
|
176 |
# Custom CSS
|
177 |
css = """
|
178 |
.gradio-container {
|
179 |
+
background-color: #f0f0f0;
|
180 |
}
|
181 |
.custom-markdown p, .custom-markdown li, .custom-markdown h2, .custom-markdown a {
|
182 |
font-size: 15px !important;
|
|
|
187 |
}
|
188 |
"""
|
189 |
|
190 |
+
transcriber_app = gr.Blocks(css=css, delete_cache=(60, 120))
|
191 |
+
|
192 |
with transcriber_app:
|
193 |
+
state = gr.State()
|
194 |
gr.Markdown(project_description, elem_classes="custom-markdown")
|
195 |
+
|
196 |
gr.TabbedInterface(
|
197 |
+
[mic_transcribe_whisper, file_transcribe_whisper, mic_transcribe_w2v2, file_transcribe_w2v2],
|
198 |
+
["Буки-Whisper микрофон", "Буки-Whisper датотека", "Буки-Wav2vec2 микрофон", "Буки-Wav2vec2 датотека"],
|
199 |
)
|
200 |
+
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
|
201 |
+
|
202 |
+
transcriber_app.unload(return_prediction_whisper_mic)
|
203 |
+
transcriber_app.unload(return_prediction_whisper_file)
|
204 |
+
transcriber_app.unload(return_prediction_w2v2)
|
205 |
|
206 |
if __name__ == "__main__":
|
207 |
transcriber_app.queue()
|
208 |
+
transcriber_app.launch(share=True)
|