Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import spaces
|
2 |
import os
|
3 |
-
# os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
4 |
-
|
5 |
import gc
|
6 |
from functools import partial
|
7 |
import gradio as gr
|
@@ -10,8 +8,6 @@ from speechbrain.inference.interfaces import Pretrained, foreign_class
|
|
10 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
11 |
import librosa
|
12 |
import whisper_timestamped as whisper
|
13 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, Wav2Vec2ForCTC, AutoProcessor
|
14 |
-
|
15 |
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
torch.backends.cuda.matmul.allow_tf32 = True
|
@@ -24,7 +20,6 @@ def clean_up_memory():
|
|
24 |
|
25 |
@spaces.GPU(duration=15)
|
26 |
def recap_sentence(string):
|
27 |
-
# Restore capitalization and punctuation using the model
|
28 |
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
|
29 |
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0)
|
30 |
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
|
@@ -32,206 +27,85 @@ def recap_sentence(string):
|
|
32 |
|
33 |
|
34 |
@spaces.GPU(duration=30)
|
35 |
-
def return_prediction_w2v2(mic=None, file=None, device=device):
|
36 |
-
if mic is not None:
|
37 |
-
waveform, sr = librosa.load(mic, sr=16000)
|
38 |
-
waveform = waveform[:60*sr]
|
39 |
-
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
|
40 |
-
elif file is not None:
|
41 |
-
waveform, sr = librosa.load(file, sr=16000)
|
42 |
-
waveform = waveform[:60*sr]
|
43 |
-
w2v2_result = w2v2_classifier.classify_file_w2v2(waveform, device)
|
44 |
-
else:
|
45 |
-
return "You must either provide a mic recording or a file"
|
46 |
-
|
47 |
-
recap_result = recap_sentence(w2v2_result[0])
|
48 |
-
|
49 |
-
# If the letter after punct is small, recap it
|
50 |
-
for i, letter in enumerate(recap_result):
|
51 |
-
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
52 |
-
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
53 |
-
|
54 |
-
clean_up_memory()
|
55 |
-
return recap_result
|
56 |
-
|
57 |
-
|
58 |
-
@spaces.GPU(duration=30)
|
59 |
-
def return_prediction_whisper_mic(mic=None, device=device):
|
60 |
-
if mic is not None:
|
61 |
-
waveform, sr = librosa.load(mic, sr=16000)
|
62 |
-
waveform = waveform[:30*sr]
|
63 |
-
whisper_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
|
64 |
-
else:
|
65 |
-
return "You must provide a mic recording"
|
66 |
-
|
67 |
-
recap_result = recap_sentence(whisper_result[0])
|
68 |
-
|
69 |
-
# If the letter after punct is small, recap it
|
70 |
-
for i, letter in enumerate(recap_result):
|
71 |
-
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
72 |
-
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
73 |
-
|
74 |
-
clean_up_memory()
|
75 |
-
return recap_result
|
76 |
-
|
77 |
-
|
78 |
-
@spaces.GPU(duration=60)
|
79 |
def return_prediction_whisper_file(file=None, device=device):
|
80 |
-
whisper_result = []
|
81 |
if file is not None:
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
84 |
whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device)
|
85 |
else:
|
86 |
-
|
87 |
-
|
88 |
recap_result = ""
|
89 |
prev_segment = ""
|
90 |
prev_segment_len = 0
|
91 |
|
92 |
-
segment_counter = 0
|
93 |
for segment in whisper_result:
|
94 |
-
segment_counter += 1
|
95 |
if prev_segment == "":
|
96 |
-
recap_segment= recap_sentence(segment[0])
|
97 |
else:
|
98 |
prev_segment_len = len(prev_segment.split())
|
99 |
recap_segment = recap_sentence(prev_segment + " " + segment[0])
|
100 |
-
# remove prev_segment from the beginning of the recap_result
|
101 |
recap_segment = recap_segment.split()
|
102 |
recap_segment = recap_segment[prev_segment_len:]
|
103 |
recap_segment = " ".join(recap_segment)
|
104 |
prev_segment = segment[0]
|
105 |
recap_result += recap_segment + " "
|
106 |
|
107 |
-
# If the letter after punct is small, recap it
|
108 |
for i, letter in enumerate(recap_result):
|
109 |
-
if i > 1 and recap_result[i-2] in [".", "!", "?"] and letter.islower():
|
110 |
-
recap_result = recap_result[:i] + letter.upper() + recap_result[i+1:]
|
111 |
-
|
112 |
-
yield recap_result
|
113 |
-
|
114 |
-
|
115 |
-
def return_prediction_compare(mic=None, file=None, device=device):
|
116 |
-
# pipe_whisper.model.to(device)
|
117 |
-
# mms_model.to(device)
|
118 |
-
if mic is not None:
|
119 |
-
waveform, sr = librosa.load(mic, sr=16000)
|
120 |
-
waveform = waveform[:60*sr]
|
121 |
-
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
|
122 |
-
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(mic, device)
|
123 |
-
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
|
124 |
-
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
|
125 |
-
|
126 |
-
elif file is not None:
|
127 |
-
waveform, sr = librosa.load(file, sr=16000)
|
128 |
-
waveform = waveform[:30*sr]
|
129 |
-
whisper_mkd_result = whisper_classifier.classify_file_whisper_mkd(waveform, device)
|
130 |
-
# result_generator_w2v2 = w2v2_classifier.classify_file_w2v2(file, device)
|
131 |
-
whisper_result = whisper_classifier.classify_file_whisper(waveform, pipe_whisper, device)
|
132 |
-
mms_result_generator = whisper_classifier.classify_file_mms(waveform, processor_mms, mms_model, device)
|
133 |
-
else:
|
134 |
-
return "You must either provide a mic recording or a file"
|
135 |
-
# pipe_whisper.model.to("cpu")
|
136 |
-
# mms_model.to("cpu")
|
137 |
-
|
138 |
-
segment_results_whisper = ""
|
139 |
-
prev_segment_whisper = ""
|
140 |
-
# segment_results_w2v2 = ""
|
141 |
-
# prev_segment_w2v2 = ""
|
142 |
-
segment_results_mms = ""
|
143 |
-
prev_segment_mms = ""
|
144 |
-
|
145 |
-
recap_result_whisper_mkd = recap_sentence(whisper_mkd_result[0])
|
146 |
-
recap_result_whisper = recap_sentence(whisper_result[0])
|
147 |
-
recap_result_mms = recap_sentence(mms_result_generator[0])
|
148 |
|
149 |
-
# If the letter after punct is small, recap it
|
150 |
-
for i, letter in enumerate(recap_result_whisper_mkd):
|
151 |
-
if i > 1 and recap_result_whisper_mkd[i-2] in [".", "!", "?"] and letter.islower():
|
152 |
-
recap_result_whisper_mkd = recap_result_whisper_mkd[:i] + letter.upper() + recap_result_whisper_mkd[i+1:]
|
153 |
-
|
154 |
-
for i, letter in enumerate(recap_result_whisper):
|
155 |
-
if i > 1 and recap_result_whisper[i-2] in [".", "!", "?"] and letter.islower():
|
156 |
-
recap_result_whisper = recap_result_whisper[:i] + letter.upper() + recap_result_whisper[i+1:]
|
157 |
-
|
158 |
-
for i, letter in enumerate(recap_result_mms):
|
159 |
-
if i > 1 and recap_result_mms[i-2] in [".", "!", "?"] and letter.islower():
|
160 |
-
recap_result_mms = recap_result_mms[:i] + letter.upper() + recap_result_mms[i+1:]
|
161 |
-
|
162 |
clean_up_memory()
|
163 |
-
return
|
164 |
-
# yield "Our W2v2: \n" + segment_results_w2v2 + "\n\n" + "MMS transcript:\n" + segment_results_mms
|
165 |
-
|
166 |
|
167 |
-
# Create a partial function with the device pre-applied
|
168 |
-
return_prediction_whisper_mic_with_device = partial(return_prediction_whisper_mic, device=device)
|
169 |
-
return_prediction_whisper_file_with_device = partial(return_prediction_whisper_file, device=device)
|
170 |
-
return_prediction_w2v2_with_device = partial(return_prediction_w2v2, device=device)
|
171 |
|
172 |
-
# Load the
|
173 |
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
174 |
whisper_classifier = whisper_classifier.to(device)
|
175 |
whisper_classifier.eval()
|
176 |
|
177 |
-
w2v2_classifier = foreign_class(source="Macedonian-ASR/wav2vec2-aed-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
178 |
-
w2v2_classifier = w2v2_classifier.to(device)
|
179 |
-
w2v2_classifier.eval()
|
180 |
-
|
181 |
-
# Load the T5 tokenizer and model for restoring capitalization
|
182 |
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
|
183 |
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
|
184 |
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
|
185 |
recap_model.to(device)
|
186 |
recap_model.eval()
|
187 |
|
188 |
-
|
189 |
mic_transcribe_whisper = gr.Interface(
|
190 |
-
fn=
|
191 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
192 |
outputs=gr.Textbox(),
|
193 |
allow_flagging="never",
|
194 |
live=False,
|
195 |
)
|
196 |
|
197 |
-
|
198 |
-
fn=
|
199 |
-
inputs=gr.
|
200 |
-
outputs=gr.Textbox(),
|
201 |
allow_flagging="never",
|
202 |
live=True
|
203 |
)
|
204 |
|
205 |
-
mic_transcribe_w2v2 = gr.Interface(
|
206 |
-
fn=return_prediction_w2v2_with_device,
|
207 |
-
inputs=gr.Audio(sources="microphone", type="filepath"),
|
208 |
-
outputs=gr.Textbox(),
|
209 |
-
allow_flagging="never",
|
210 |
-
live=False,
|
211 |
-
)
|
212 |
-
|
213 |
project_description = '''
|
214 |
<img src="https://i.ibb.co/SKDfwn9/bookie.png"
|
215 |
alt="Bookie logo"
|
216 |
style="float: right; width: 130px; height: 110px; margin-left: 10px;" />
|
217 |
-
|
218 |
-
##
|
219 |
1. **Дејан Порјазовски**
|
220 |
2. **Илина Јакимовска**
|
221 |
3. **Ордан Чукалиев**
|
222 |
4. **Никола Стиков**
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
## Во тренирањето на овој модел се употребени податоци од:
|
227 |
-
1. Дигитален архив за етнолошки и антрополошки ресурси ([ДАЕАР](https://iea.pmf.ukim.edu.mk/tabs/view/61f236ed7d95176b747c20566ddbda1a)) при Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
|
228 |
-
2. Аудио верзија на меѓународното списание [„ЕтноАнтропоЗум“](https://etno.pmf.ukim.mk/index.php/eaz/issue/archive) на Институтот за етнологија и антропологија, Природно-математички факултет при УКИМ.
|
229 |
-
3. Аудио подкастот [„Обични луѓе“](https://obicniluge.mk/episodes/) на Илина Јакимовска
|
230 |
-
4. Научните видеа од серијалот [„Наука за деца“](http://naukazadeca.mk), фондација [КАНТАРОТ](https://qantarot.substack.com/)
|
231 |
-
5. Македонска верзија на [Mozilla Common Voice](https://commonvoice.mozilla.org/en/datasets) (верзија 18.0)
|
232 |
|
233 |
-
##
|
234 |
-
|
235 |
'''
|
236 |
|
237 |
# Custom CSS
|
@@ -248,31 +122,15 @@ css = """
|
|
248 |
}
|
249 |
"""
|
250 |
|
251 |
-
transcriber_app = gr.Blocks(css=css
|
252 |
-
|
253 |
with transcriber_app:
|
254 |
-
state = gr.State()
|
255 |
gr.Markdown(project_description, elem_classes="custom-markdown")
|
256 |
-
|
257 |
-
# gr.TabbedInterface(
|
258 |
-
# [mic_transcribe_whisper, mic_transcribe_compare],
|
259 |
-
# ["Буки-Whisper транскрипција", "Споредба на модели"],
|
260 |
-
# )
|
261 |
-
# state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
|
262 |
-
|
263 |
gr.TabbedInterface(
|
264 |
-
[mic_transcribe_whisper,
|
265 |
-
["
|
266 |
)
|
267 |
-
state = gr.State(value=[], delete_callback=lambda v: print("STATE DELETED"))
|
268 |
-
|
269 |
-
transcriber_app.unload(return_prediction_whisper_mic)
|
270 |
-
transcriber_app.unload(return_prediction_whisper_file)
|
271 |
-
transcriber_app.unload(return_prediction_compare)
|
272 |
-
transcriber_app.unload(return_prediction_w2v2)
|
273 |
-
|
274 |
|
275 |
-
# transcriber_app.launch(debug=True, share=True, ssl_verify=False)
|
276 |
if __name__ == "__main__":
|
277 |
transcriber_app.queue()
|
278 |
-
transcriber_app.launch(share=True)
|
|
|
1 |
import spaces
|
2 |
import os
|
|
|
|
|
3 |
import gc
|
4 |
from functools import partial
|
5 |
import gradio as gr
|
|
|
8 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
9 |
import librosa
|
10 |
import whisper_timestamped as whisper
|
|
|
|
|
11 |
|
12 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
20 |
|
21 |
@spaces.GPU(duration=15)
|
22 |
def recap_sentence(string):
|
|
|
23 |
inputs = recap_tokenizer(["restore capitalization and punctuation: " + string], return_tensors="pt", padding=True).to(device)
|
24 |
outputs = recap_model.generate(**inputs, max_length=768, num_beams=5, early_stopping=True).squeeze(0)
|
25 |
recap_result = recap_tokenizer.decode(outputs, skip_special_tokens=True)
|
|
|
27 |
|
28 |
|
29 |
@spaces.GPU(duration=30)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def return_prediction_whisper_file(file=None, device=device):
|
|
|
31 |
if file is not None:
|
32 |
+
try:
|
33 |
+
waveform, sr = librosa.load(file.name, sr=16000)
|
34 |
+
except Exception as e:
|
35 |
+
return f"Error loading the audio file: {str(e)}"
|
36 |
+
|
37 |
+
waveform = waveform[:3600 * sr]
|
38 |
whisper_result = whisper_classifier.classify_file_whisper_mkd_streaming(waveform, device)
|
39 |
else:
|
40 |
+
return "You must provide an audio file."
|
41 |
+
|
42 |
recap_result = ""
|
43 |
prev_segment = ""
|
44 |
prev_segment_len = 0
|
45 |
|
|
|
46 |
for segment in whisper_result:
|
|
|
47 |
if prev_segment == "":
|
48 |
+
recap_segment = recap_sentence(segment[0])
|
49 |
else:
|
50 |
prev_segment_len = len(prev_segment.split())
|
51 |
recap_segment = recap_sentence(prev_segment + " " + segment[0])
|
|
|
52 |
recap_segment = recap_segment.split()
|
53 |
recap_segment = recap_segment[prev_segment_len:]
|
54 |
recap_segment = " ".join(recap_segment)
|
55 |
prev_segment = segment[0]
|
56 |
recap_result += recap_segment + " "
|
57 |
|
|
|
58 |
for i, letter in enumerate(recap_result):
|
59 |
+
if i > 1 and recap_result[i - 2] in [".", "!", "?"] and letter.islower():
|
60 |
+
recap_result = recap_result[:i] + letter.upper() + recap_result[i + 1:]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
clean_up_memory()
|
63 |
+
return recap_result
|
|
|
|
|
64 |
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Load the models
|
67 |
whisper_classifier = foreign_class(source="Macedonian-ASR/whisper-large-v3-macedonian-asr", pymodule_file="custom_interface_app.py", classname="ASR")
|
68 |
whisper_classifier = whisper_classifier.to(device)
|
69 |
whisper_classifier.eval()
|
70 |
|
|
|
|
|
|
|
|
|
|
|
71 |
recap_model_name = "Macedonian-ASR/mt5-restore-capitalization-macedonian"
|
72 |
recap_tokenizer = T5Tokenizer.from_pretrained(recap_model_name)
|
73 |
recap_model = T5ForConditionalGeneration.from_pretrained(recap_model_name, torch_dtype=torch.float16)
|
74 |
recap_model.to(device)
|
75 |
recap_model.eval()
|
76 |
|
77 |
+
# Interfaces
|
78 |
mic_transcribe_whisper = gr.Interface(
|
79 |
+
fn=return_prediction_whisper_file,
|
80 |
inputs=gr.Audio(sources="microphone", type="filepath"),
|
81 |
outputs=gr.Textbox(),
|
82 |
allow_flagging="never",
|
83 |
live=False,
|
84 |
)
|
85 |
|
86 |
+
file_transcribe_whisper_upload = gr.Interface(
|
87 |
+
fn=return_prediction_whisper_file,
|
88 |
+
inputs=gr.File(label="Upload an Audio File", type="file"),
|
89 |
+
outputs=gr.Textbox(label="Transcription"),
|
90 |
allow_flagging="never",
|
91 |
live=True
|
92 |
)
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
project_description = '''
|
95 |
<img src="https://i.ibb.co/SKDfwn9/bookie.png"
|
96 |
alt="Bookie logo"
|
97 |
style="float: right; width: 130px; height: 110px; margin-left: 10px;" />
|
98 |
+
|
99 |
+
## Authors:
|
100 |
1. **Дејан Порјазовски**
|
101 |
2. **Илина Јакимовска**
|
102 |
3. **Ордан Чукалиев**
|
103 |
4. **Никола Стиков**
|
104 |
|
105 |
+
This collaboration is part of the activities of the **Center for Advanced Interdisciplinary Research ([CeNIIs](https://ukim.edu.mk/en/centri/centar-za-napredni-interdisciplinarni-istrazhuvanja-ceniis))** at UKIM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
## Contribute to improving Macedonian speech recognition models
|
108 |
+
You can find instructions for donating Macedonian speech at the following [link](https://drive.google.com/file/d/1YdZJz9o1X8AMc6J4MNPnVZjASyIXnvoZ/view?usp=sharing).
|
109 |
'''
|
110 |
|
111 |
# Custom CSS
|
|
|
122 |
}
|
123 |
"""
|
124 |
|
125 |
+
transcriber_app = gr.Blocks(css=css)
|
126 |
+
|
127 |
with transcriber_app:
|
|
|
128 |
gr.Markdown(project_description, elem_classes="custom-markdown")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
gr.TabbedInterface(
|
130 |
+
[mic_transcribe_whisper, file_transcribe_whisper_upload],
|
131 |
+
["Microphone Transcription", "Upload File for Transcription"],
|
132 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
|
|
134 |
if __name__ == "__main__":
|
135 |
transcriber_app.queue()
|
136 |
+
transcriber_app.launch(share=True)
|