File size: 6,082 Bytes
5c04edd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
from sklearn.metrics import precision_score, recall_score 

def main():
    st.title("Binary Classification Web App")
    st.sidebar.title("Binary Classification Web App")
    st.markdown("Are your mushroom is editable or poisionous? ")
    st.sidebar.markdown("Are your mushroom is editable or poisionous? ")

    def load_data():
        data = pd.read_csv('/home/rhyme/Desktop/Project/mushrooms.csv')
        label = LabelEncoder()
        for col in data.columns:
            data[col]= label.fit_transform(data[col])

        return data


    @st.cache(persist=True)
    def split(df):
        y = df.type
        x = df.drop(columns=['type'])
        x_train  , x_test, y_train,y_test = train_test_split(x,y,test_size=0.3, random_state=0)
        return x_train,x_test, y_train,y_test


    def plot_metrics(metrics_list):
        if 'Confusion Matrix' in metrics_list:
            st.subheader("Confusion Matrix")
            plot_confusion_matrix(model, x_test,y_test,display_labels=class_names)
            st.pyplot()

        if 'ROC Curve' in metrics_list:
            st.subheader("ROC Curve")
            plot_roc_curve(model,x_test,y_test)   
            st.pyplot() 

        if 'Precision-Recall Curve' in metrics_list:
            st.subheader("Precision-Recall Curve")
            plot_precision_recall_curve(model,x_test,y_test)   
            st.pyplot()     



    df = load_data()
    x_train, x_test, y_train, y_test = split(df)
    class_names = ['edible', 'poisionous']
    st.sidebar.subheader("Chosse Classifiers")
    classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine(SVM)", "Logostics Regression", "Random Forest"))

    if classifier == "Support Vector Machine(SVM)":
        st.sidebar.subheader("Model Hyperparameters")
        C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C')
        kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
        gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')

        metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))

        if st.sidebar.button("Classify", key = 'classify'):
            st.subheader("Support Vector Machine (SVM)")
            model = SVC(C=C,kernel=kernel, gamma=gamma)
            model.fit(x_train,y_train)
            accuracy = model.score(x_test,y_test)
            y_pred = model.predict(x_test)
            st.write("Accuracy: ",accuracy.round(2))
            st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
            st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
            plot_metrics(metrics)


    if classifier == "Logostics Regression":
        st.sidebar.subheader("Model Hyperparameters")
        C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
        max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')

        # kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
        # gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')

        metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))

        if st.sidebar.button("Classify", key = 'classify'):
            st.subheader("Logistics Regression")
            model = LogisticRegression(C=C,max_iter =max_iter)
            model.fit(x_train,y_train)
            accuracy = model.score(x_test,y_test)
            y_pred = model.predict(x_test)
            st.write("Accuracy: ",accuracy.round(2))
            st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
            st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
            plot_metrics(metrics)

    #Random Forest
    if classifier == "Random Forest":
        st.sidebar.subheader("Model Hyperparameters")
        n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 500, step=10,key='n_estmators')
        max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20 , step=1, key='max_depth')
        bootstrap = st.sidebar.radio("Bootstrap samples when builoding trees", ('True','False'),key='bootstrap')
        # C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
        # max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')

        # kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
        # gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')

        metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))

        if st.sidebar.button("Classify", key = 'classify'):
            st.subheader("Random Forest")
            model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth,bootstrap=bootstrap)
            model.fit(x_train,y_train)
            accuracy = model.score(x_test,y_test)
            y_pred = model.predict(x_test)
            st.write("Accuracy: ",accuracy.round(2))
            st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
            st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
            plot_metrics(metrics)

    if st.sidebar.checkbox("show raw data",False):
        st.subheader("Mushroom data Set (Classifications)")
        st.write(df)


if __name__ == '__main__':
    main()