Spaces:
Build error
Build error
visit2sachin56
commited on
Commit
•
5c04edd
1
Parent(s):
d3110d3
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from sklearn.svm import SVC
|
5 |
+
from sklearn.linear_model import LogisticRegression
|
6 |
+
from sklearn.ensemble import RandomForestClassifier
|
7 |
+
from sklearn.preprocessing import LabelEncoder
|
8 |
+
from sklearn.model_selection import train_test_split
|
9 |
+
from sklearn.metrics import plot_confusion_matrix, plot_roc_curve, plot_precision_recall_curve
|
10 |
+
from sklearn.metrics import precision_score, recall_score
|
11 |
+
|
12 |
+
def main():
|
13 |
+
st.title("Binary Classification Web App")
|
14 |
+
st.sidebar.title("Binary Classification Web App")
|
15 |
+
st.markdown("Are your mushroom is editable or poisionous? ")
|
16 |
+
st.sidebar.markdown("Are your mushroom is editable or poisionous? ")
|
17 |
+
|
18 |
+
def load_data():
|
19 |
+
data = pd.read_csv('/home/rhyme/Desktop/Project/mushrooms.csv')
|
20 |
+
label = LabelEncoder()
|
21 |
+
for col in data.columns:
|
22 |
+
data[col]= label.fit_transform(data[col])
|
23 |
+
|
24 |
+
return data
|
25 |
+
|
26 |
+
|
27 |
+
@st.cache(persist=True)
|
28 |
+
def split(df):
|
29 |
+
y = df.type
|
30 |
+
x = df.drop(columns=['type'])
|
31 |
+
x_train , x_test, y_train,y_test = train_test_split(x,y,test_size=0.3, random_state=0)
|
32 |
+
return x_train,x_test, y_train,y_test
|
33 |
+
|
34 |
+
|
35 |
+
def plot_metrics(metrics_list):
|
36 |
+
if 'Confusion Matrix' in metrics_list:
|
37 |
+
st.subheader("Confusion Matrix")
|
38 |
+
plot_confusion_matrix(model, x_test,y_test,display_labels=class_names)
|
39 |
+
st.pyplot()
|
40 |
+
|
41 |
+
if 'ROC Curve' in metrics_list:
|
42 |
+
st.subheader("ROC Curve")
|
43 |
+
plot_roc_curve(model,x_test,y_test)
|
44 |
+
st.pyplot()
|
45 |
+
|
46 |
+
if 'Precision-Recall Curve' in metrics_list:
|
47 |
+
st.subheader("Precision-Recall Curve")
|
48 |
+
plot_precision_recall_curve(model,x_test,y_test)
|
49 |
+
st.pyplot()
|
50 |
+
|
51 |
+
|
52 |
+
|
53 |
+
df = load_data()
|
54 |
+
x_train, x_test, y_train, y_test = split(df)
|
55 |
+
class_names = ['edible', 'poisionous']
|
56 |
+
st.sidebar.subheader("Chosse Classifiers")
|
57 |
+
classifier = st.sidebar.selectbox("Classifier", ("Support Vector Machine(SVM)", "Logostics Regression", "Random Forest"))
|
58 |
+
|
59 |
+
if classifier == "Support Vector Machine(SVM)":
|
60 |
+
st.sidebar.subheader("Model Hyperparameters")
|
61 |
+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C')
|
62 |
+
kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
63 |
+
gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
64 |
+
|
65 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
66 |
+
|
67 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
68 |
+
st.subheader("Support Vector Machine (SVM)")
|
69 |
+
model = SVC(C=C,kernel=kernel, gamma=gamma)
|
70 |
+
model.fit(x_train,y_train)
|
71 |
+
accuracy = model.score(x_test,y_test)
|
72 |
+
y_pred = model.predict(x_test)
|
73 |
+
st.write("Accuracy: ",accuracy.round(2))
|
74 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
75 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
76 |
+
plot_metrics(metrics)
|
77 |
+
|
78 |
+
|
79 |
+
if classifier == "Logostics Regression":
|
80 |
+
st.sidebar.subheader("Model Hyperparameters")
|
81 |
+
C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
|
82 |
+
max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')
|
83 |
+
|
84 |
+
# kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
85 |
+
# gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
86 |
+
|
87 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
88 |
+
|
89 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
90 |
+
st.subheader("Logistics Regression")
|
91 |
+
model = LogisticRegression(C=C,max_iter =max_iter)
|
92 |
+
model.fit(x_train,y_train)
|
93 |
+
accuracy = model.score(x_test,y_test)
|
94 |
+
y_pred = model.predict(x_test)
|
95 |
+
st.write("Accuracy: ",accuracy.round(2))
|
96 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
97 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
98 |
+
plot_metrics(metrics)
|
99 |
+
|
100 |
+
#Random Forest
|
101 |
+
if classifier == "Random Forest":
|
102 |
+
st.sidebar.subheader("Model Hyperparameters")
|
103 |
+
n_estimators = st.sidebar.number_input("The number of trees in the forest", 100, 500, step=10,key='n_estmators')
|
104 |
+
max_depth = st.sidebar.number_input("The maximum depth of the tree", 1, 20 , step=1, key='max_depth')
|
105 |
+
bootstrap = st.sidebar.radio("Bootstrap samples when builoding trees", ('True','False'),key='bootstrap')
|
106 |
+
# C = st.sidebar.number_input("C (Regularization parameter)", 0.01,10.0,step=0.01,key='C_LR')
|
107 |
+
# max_iter = st.sidebar.slider("Maximum number of iterations", 100, 500, key='max_iter')
|
108 |
+
|
109 |
+
# kernel = st.sidebar.radio("kernel", ("rbf", "linear"), key='kernal')
|
110 |
+
# gamma = st.sidebar.radio("Gamma (Kernel Coefficient)", ("scale","auto"),key='gamma')
|
111 |
+
|
112 |
+
metrics = st.sidebar.multiselect("What metrics to plot?", ('Confusion Matrix','ROC Curve','Precision-Recall Curve' ))
|
113 |
+
|
114 |
+
if st.sidebar.button("Classify", key = 'classify'):
|
115 |
+
st.subheader("Random Forest")
|
116 |
+
model = RandomForestClassifier(n_estimators=n_estimators, max_depth=max_depth,bootstrap=bootstrap)
|
117 |
+
model.fit(x_train,y_train)
|
118 |
+
accuracy = model.score(x_test,y_test)
|
119 |
+
y_pred = model.predict(x_test)
|
120 |
+
st.write("Accuracy: ",accuracy.round(2))
|
121 |
+
st.write("Precision : ", precision_score(y_test,y_pred, labels=class_names).round(2))
|
122 |
+
st.write("Recall: ", recall_score(y_test, y_pred, labels= class_names).round(2))
|
123 |
+
plot_metrics(metrics)
|
124 |
+
|
125 |
+
if st.sidebar.checkbox("show raw data",False):
|
126 |
+
st.subheader("Mushroom data Set (Classifications)")
|
127 |
+
st.write(df)
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == '__main__':
|
131 |
+
main()
|
132 |
+
|
133 |
+
|