Spaces:
Running
Running
File size: 6,276 Bytes
4fa4c7b 01af800 4fa4c7b acd9509 01af800 4fa4c7b b49edc5 4fa4c7b 2375d69 b49edc5 2375d69 01af800 6f92fa3 acd9509 6f92fa3 2375d69 4fa4c7b 01af800 2375d69 4fa4c7b 2375d69 01af800 2375d69 01af800 2375d69 01af800 2375d69 4fa4c7b 2375d69 6f92fa3 4fa4c7b 6f92fa3 acd9509 4fa4c7b acd9509 6f92fa3 4fa4c7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import requests
import json
import torch
import os
from datetime import datetime, timedelta
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
class GigaChat:
def __init__(self, auth_file='auth_token.json'):
# url = "https://ngw.devices.sberbank.ru:9443/api/v2/oauth"
self.auth_url = "https://api.mlrnd.ru/api/v2/oauth"
# url = "https://gigachat.devices.sberbank.ru/api/v1/chat/completions"
self.gen_url = "https://api.mlrnd.ru/api/v1/chat/completions"
# payload='scope=GIGACHAT_API_CORP'
self.payload='scope=API_v1'
self.auth_file = None
if self.auth_file is None or not os.path.isfile(auth_file):
self.gen_giga_token(auth_file)
@classmethod
def get_giga(cls, auth_file='auth_token.json'):
print('got giga')
return cls(auth_file)
def gen_giga_token(self, auth_file):
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'application/json',
'RqUID': '1b519047-0ee9-4b63-8599-e5ffc9c77e72',
'Authorization': os.getenv('GIGACHAT_API_TOKEN')
}
response = requests.request(
"POST",
self.auth_url,
headers=headers,
data=self.payload,
verify=False
)
with open(auth_file, 'w') as f:
json.dump(json.loads(response.text), f, ensure_ascii=False)
def get_text(self, content, auth_token=None, params=None):
if params is None:
params = dict()
payload = json.dumps(
{
"model": "Test_model",
"messages": content,
"temperature": params.get("temperature") if params.get("temperature") else 1,
"top_p": params.get("top_p") if params.get("top_p") else 0.9,
"n": params.get("n") if params.get("n") else 1,
"stream": False,
"max_tokens": params.get("max_tokens") if params.get("max_tokens") else 512,
"repetition_penalty": params.get("repetition_penalty") if params.get("repetition_penalty") else 1
}
)
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {auth_token}'
}
response = requests.request("POST", self.gen_url, headers=headers, data=payload, verify=False)
return json.loads(response.text)
def get_tinyllama():
print('got llama')
tinyllama = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16, device_map="auto")
return tinyllama
def get_qwen2ins1b():
model = AutoModelForCausalLM.from_pretrained(
"Qwen/Qwen2-1.5B-Instruct",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
return {'model': model, 'tokenizer': tokenizer}
def response_tinyllama(
model=None,
messages=None,
params=None
):
if params is None:
params = dict()
messages_dict = [
{
"role": "system",
"content": "You are a friendly and helpful chatbot",
}
]
for step in messages:
messages_dict.append({'role': 'user', 'content': step[0]})
if len(step) >= 2:
messages_dict.append({'role': 'assistant', 'content': step[1]})
prompt = model.tokenizer.apply_chat_template(messages_dict, tokenize=False, add_generation_prompt=True)
outputs = model(
prompt,
max_new_tokens = params.get("max_tokens") if params.get("max_tokens") else 512,
temperature = params.get("temperature") if params.get("temperature") else 1,
top_p = params.get("top_p") if params.get("top_p") else 0.9,
repetition_penalty = params.get("repetition_penalty") if params.get("repetition_penalty") else 1
)
return outputs[0]['generated_text'].split('<|assistant|>')[1].strip()
def response_qwen2ins1b(
model=None,
messages=None,
params=None
):
messages_dict = [
{
"role": "system",
"content": "You are a friendly and helpful chatbot",
}
]
for step in messages:
messages_dict.append({'role': 'user', 'content': step[0]})
if len(step) >= 2:
messages_dict.append({'role': 'assistant', 'content': step[1]})
text = model['tokenizer'].apply_chat_template(
messages_dict,
tokenize=False,
add_generation_prompt=True
)
model_inputs = model['tokenizer']([text], return_tensors="pt")
generated_ids = model['model'].generate(
model_inputs.input_ids,
max_new_tokens = params.get("max_tokens") if params.get("max_tokens") else 512,
temperature = params.get("temperature") if params.get("temperature") else 1,
top_p = params.get("top_p") if params.get("top_p") else 0.9,
repetition_penalty = params.get("repetition_penalty") if params.get("repetition_penalty") else 1
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = model['tokenizer'].batch_decode(generated_ids, skip_special_tokens=True)[0]
return response # outputs[0]['generated_text'] #.split('<|assistant|>')[1].strip()
def response_gigachat(
model=None,
messages=None,
model_params=None
): # content=None, auth_file=None
with open(model.auth_file) as f:
auth_token = json.load(f)
if datetime.fromtimestamp(auth_token['expires_at']/1000) <= datetime.now() - timedelta(seconds=60):
model.gen_giga_token(model.auth_file)
with open(model.auth_file) as f:
auth_token = json.load(f)
content = []
for step in messages:
content.append({'role': 'user', 'content': step[0]})
if len(step) >= 2:
content.append({'role': 'assistant', 'content': step[1]})
resp = model.get_text(content, auth_token['access_token'], model_params)
return resp["choices"][0]["message"]["content"] |