Spaces:
Sleeping
Sleeping
vtrv.vls
commited on
Commit
·
4fa4c7b
1
Parent(s):
9540a56
Functionality rework
Browse files
app.py
CHANGED
@@ -2,70 +2,92 @@ import gradio
|
|
2 |
import argparse
|
3 |
import os
|
4 |
import boto3
|
5 |
-
from datetime import datetime
|
6 |
import pandas as pd
|
7 |
from copy import copy
|
8 |
|
9 |
-
|
10 |
-
from models import get_tinyllama, get_qwen2ins1b, response_tinyllama, response_qwen2ins1b
|
11 |
-
from constants import css, js_code, js_light
|
12 |
-
|
13 |
-
MERA_table = None
|
14 |
-
TINYLLAMA = None
|
15 |
-
QWEN2INS1B = None
|
16 |
|
17 |
-
|
18 |
-
|
|
|
19 |
|
|
|
20 |
S3_SESSION = None
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
chat_history.append([content])
|
38 |
-
res = response_qwen2ins1b(QWEN2INS1B, chat_history)
|
39 |
-
chat_history[-1].append(res)
|
40 |
-
send_to_s3(res, f'protobench/tiny_{str(datetime.now()).replace(" ", "_")}.json', S3_SESSION)
|
41 |
-
return '', chat_history
|
42 |
-
|
43 |
-
def model_gen(content, chat_history, model_type: str):
|
44 |
if content is None:
|
45 |
return '', []
|
46 |
if len(content) == 0:
|
47 |
return '', []
|
48 |
-
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
-
def model_regen(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
if chat_history is None:
|
53 |
return '', []
|
54 |
-
if len(chat_history) == 0:
|
55 |
-
return '', []
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
def tab_arena():
|
|
|
69 |
with gradio.Row():
|
70 |
with gradio.Column():
|
71 |
model_left = gradio.Dropdown(["TINYLLAMA", "QWEN2INS1B", "RUBASE"], value="TINYLLAMA", interactive=True, multiselect=False, label="Left model")
|
@@ -85,7 +107,7 @@ def tab_arena():
|
|
85 |
|
86 |
with gradio.Row():
|
87 |
with gradio.Accordion("Parameters", open=False):
|
88 |
-
|
89 |
top_p = gradio.Slider(label='Top P', minimum=0, maximum=1, value=1, step=0.05, interactive=True)
|
90 |
temp = gradio.Slider(label='Temperature', minimum=0, maximum=1, value=0.7, step=0.05, interactive=True)
|
91 |
max_tokens = gradio.Slider(label='Max ouput tokens', minimum=1, maximum=2048, value=512, step=1, interactive=True)
|
@@ -94,14 +116,30 @@ def tab_arena():
|
|
94 |
clear = gradio.ClearButton([msg, chatbot_left, chatbot_right], value='Clear history')
|
95 |
regen_left = gradio.Button(value='Regenerate left answer')
|
96 |
regen_right = gradio.Button(value='Regenerate right answer')
|
97 |
-
regen_left.click(
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
with gradio.Blocks():
|
101 |
model_left.change(clear_chat, [], [msg, chatbot_left])
|
102 |
model_right.change(clear_chat, [], [msg, chatbot_right])
|
103 |
-
msg.submit(
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
# with gradio.Column():
|
107 |
# gradio.ChatInterface(
|
@@ -161,8 +199,6 @@ def tab_leaderboard():
|
|
161 |
with open("test.md", "r") as f:
|
162 |
TEST_MD = f.read()
|
163 |
|
164 |
-
available_models = ["GigaChat", ""] # list(model_info.keys())
|
165 |
-
|
166 |
def build_demo():
|
167 |
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
168 |
|
@@ -206,9 +242,6 @@ if __name__ == "__main__":
|
|
206 |
# data_load(args.result_file)
|
207 |
# TYPES = ["number", "markdown", "number"]
|
208 |
|
209 |
-
TINY_LLAMA = get_tinyllama()
|
210 |
-
QWEN2INS1B = get_qwen2ins1b()
|
211 |
-
|
212 |
try:
|
213 |
session = boto3.session.Session()
|
214 |
S3_SESSION = session.client(
|
@@ -220,8 +253,8 @@ if __name__ == "__main__":
|
|
220 |
except:
|
221 |
print('Failed to start s3 session')
|
222 |
|
223 |
-
|
224 |
-
|
225 |
|
226 |
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
|
227 |
# demo.launch()
|
|
|
2 |
import argparse
|
3 |
import os
|
4 |
import boto3
|
|
|
5 |
import pandas as pd
|
6 |
from copy import copy
|
7 |
|
8 |
+
import queue
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
from constants import css, js_code, js_light
|
11 |
+
from utils import model_response, clear_chat
|
12 |
+
from models import get_tinyllama, get_qwen2ins1b, GigaChat, response_gigachat, response_qwen2ins1b, response_tinyllama
|
13 |
|
14 |
+
INIT_MODELS = dict()
|
15 |
S3_SESSION = None
|
16 |
+
CURRENT_MODELS = queue.LifoQueue()
|
17 |
+
MODEL_LIB = {'TINYLLAMA': get_tinyllama, "QWEN2INS1B": get_qwen2ins1b, "RUBASE": GigaChat.get_giga}
|
18 |
+
GEN_LIB = {'TINYLLAMA': response_tinyllama, "QWEN2INS1B": response_qwen2ins1b, "RUBASE": response_gigachat}
|
19 |
+
|
20 |
+
def model_gen(
|
21 |
+
content,
|
22 |
+
chat_history,
|
23 |
+
model_name: str,
|
24 |
+
top_p,
|
25 |
+
temp,
|
26 |
+
max_tokens,
|
27 |
+
no_context=False
|
28 |
+
):
|
29 |
+
|
30 |
+
global INIT_MODELS, S3_SESSION, GEN_LIB, MODEL_LIB
|
31 |
+
model_manager(model_name, MODEL_LIB, 3)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
if content is None:
|
33 |
return '', []
|
34 |
if len(content) == 0:
|
35 |
return '', []
|
36 |
+
|
37 |
+
chat_history = chat_history[-1] if no_context else chat_history
|
38 |
+
|
39 |
+
return model_response(
|
40 |
+
content,
|
41 |
+
chat_history,
|
42 |
+
S3_SESSION,
|
43 |
+
INIT_MODELS,
|
44 |
+
GEN_LIB,
|
45 |
+
model_name,
|
46 |
+
{"top_p": top_p, "temperature": temp, "max_tokens": max_tokens}
|
47 |
+
)
|
48 |
|
49 |
+
def model_regen(
|
50 |
+
content,
|
51 |
+
chat_history,
|
52 |
+
model_name: str,
|
53 |
+
top_p,
|
54 |
+
temp,
|
55 |
+
max_tokens,
|
56 |
+
no_context=False
|
57 |
+
):
|
58 |
+
|
59 |
+
global INIT_MODELS, S3_SESSION, GEN_LIB, MODEL_LIB
|
60 |
+
model_manager(model_name, MODEL_LIB, 3)
|
61 |
if chat_history is None:
|
62 |
return '', []
|
|
|
|
|
63 |
|
64 |
+
chat_history = chat_history[-1] if no_context else chat_history
|
65 |
+
content = copy(chat_history[-1][0])
|
66 |
+
|
67 |
+
return model_response(
|
68 |
+
content,
|
69 |
+
chat_history[:-1],
|
70 |
+
S3_SESSION,
|
71 |
+
INIT_MODELS,
|
72 |
+
GEN_LIB,
|
73 |
+
model_name,
|
74 |
+
{"top_p": top_p, "temperature": temp, "max_tokens": max_tokens}
|
75 |
+
)
|
76 |
|
77 |
+
def model_manager(
|
78 |
+
add_model,
|
79 |
+
model_lib,
|
80 |
+
max_models=3
|
81 |
+
):
|
82 |
+
global INIT_MODELS, CURRENT_MODELS
|
83 |
+
while CURRENT_MODELS.qsize() >= max_models:
|
84 |
+
model_del = CURRENT_MODELS.get()
|
85 |
+
INIT_MODELS[model_del] = None
|
86 |
+
CURRENT_MODELS.put(add_model)
|
87 |
+
INIT_MODELS[add_model] = model_lib[add_model]()
|
88 |
|
89 |
def tab_arena():
|
90 |
+
global S3_SESSION, GEN_LIB, MODEL_LIB, INIT_MODELS, CURRENT_MODELS
|
91 |
with gradio.Row():
|
92 |
with gradio.Column():
|
93 |
model_left = gradio.Dropdown(["TINYLLAMA", "QWEN2INS1B", "RUBASE"], value="TINYLLAMA", interactive=True, multiselect=False, label="Left model")
|
|
|
107 |
|
108 |
with gradio.Row():
|
109 |
with gradio.Accordion("Parameters", open=False):
|
110 |
+
no_context = gradio.Checkbox(label="No context", value=False)
|
111 |
top_p = gradio.Slider(label='Top P', minimum=0, maximum=1, value=1, step=0.05, interactive=True)
|
112 |
temp = gradio.Slider(label='Temperature', minimum=0, maximum=1, value=0.7, step=0.05, interactive=True)
|
113 |
max_tokens = gradio.Slider(label='Max ouput tokens', minimum=1, maximum=2048, value=512, step=1, interactive=True)
|
|
|
116 |
clear = gradio.ClearButton([msg, chatbot_left, chatbot_right], value='Clear history')
|
117 |
regen_left = gradio.Button(value='Regenerate left answer')
|
118 |
regen_right = gradio.Button(value='Regenerate right answer')
|
119 |
+
regen_left.click(
|
120 |
+
model_gen,
|
121 |
+
[msg, chatbot_left, model_left, top_p, temp, max_tokens, no_context],
|
122 |
+
[msg, chatbot_left]
|
123 |
+
)
|
124 |
+
regen_right.click(
|
125 |
+
model_gen,
|
126 |
+
[msg, chatbot_right, model_right, top_p, temp, max_tokens, no_context],
|
127 |
+
[msg, chatbot_right]
|
128 |
+
)
|
129 |
|
130 |
with gradio.Blocks():
|
131 |
model_left.change(clear_chat, [], [msg, chatbot_left])
|
132 |
model_right.change(clear_chat, [], [msg, chatbot_right])
|
133 |
+
msg.submit(
|
134 |
+
model_gen,
|
135 |
+
[msg, chatbot_left, model_left, top_p, temp, max_tokens, no_context],
|
136 |
+
[msg, chatbot_left]
|
137 |
+
)
|
138 |
+
msg.submit(
|
139 |
+
model_gen,
|
140 |
+
[msg, chatbot_right, model_right, top_p, temp, max_tokens, no_context],
|
141 |
+
[msg, chatbot_right]
|
142 |
+
)
|
143 |
|
144 |
# with gradio.Column():
|
145 |
# gradio.ChatInterface(
|
|
|
199 |
with open("test.md", "r") as f:
|
200 |
TEST_MD = f.read()
|
201 |
|
|
|
|
|
202 |
def build_demo():
|
203 |
# global original_dfs, available_models, gpt4t_dfs, haiku_dfs, llama_dfs
|
204 |
|
|
|
242 |
# data_load(args.result_file)
|
243 |
# TYPES = ["number", "markdown", "number"]
|
244 |
|
|
|
|
|
|
|
245 |
try:
|
246 |
session = boto3.session.Session()
|
247 |
S3_SESSION = session.client(
|
|
|
253 |
except:
|
254 |
print('Failed to start s3 session')
|
255 |
|
256 |
+
app = build_demo()
|
257 |
+
app.launch(share=args.share, height=3000, width="110%") # share=args.share
|
258 |
|
259 |
# demo = gradio.Interface(fn=gen, inputs="text", outputs="text")
|
260 |
# demo.launch()
|
models.py
CHANGED
@@ -1,6 +1,77 @@
|
|
|
|
|
|
1 |
import torch
|
|
|
|
|
2 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
def get_tinyllama():
|
5 |
tinyllama = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16, device_map="auto")
|
6 |
return tinyllama
|
@@ -17,9 +88,13 @@ def get_qwen2ins1b():
|
|
17 |
|
18 |
def response_tinyllama(
|
19 |
model=None,
|
20 |
-
messages=None
|
|
|
21 |
):
|
22 |
|
|
|
|
|
|
|
23 |
messages_dict = [
|
24 |
{
|
25 |
"role": "system",
|
@@ -32,13 +107,20 @@ def response_tinyllama(
|
|
32 |
messages_dict.append({'role': 'assistant', 'content': step[1]})
|
33 |
|
34 |
prompt = model.tokenizer.apply_chat_template(messages_dict, tokenize=False, add_generation_prompt=True)
|
35 |
-
outputs = model(
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
return outputs[0]['generated_text'].split('<|assistant|>')[1].strip()
|
38 |
|
39 |
def response_qwen2ins1b(
|
40 |
model=None,
|
41 |
-
messages=None
|
|
|
42 |
):
|
43 |
|
44 |
messages_dict = [
|
@@ -61,7 +143,10 @@ def response_qwen2ins1b(
|
|
61 |
|
62 |
generated_ids = model['model'].generate(
|
63 |
model_inputs.input_ids,
|
64 |
-
max_new_tokens=512
|
|
|
|
|
|
|
65 |
)
|
66 |
generated_ids = [
|
67 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
@@ -69,4 +154,28 @@ def response_qwen2ins1b(
|
|
69 |
|
70 |
response = model['tokenizer'].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
71 |
|
72 |
-
return response # outputs[0]['generated_text'] #.split('<|assistant|>')[1].strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import json
|
3 |
import torch
|
4 |
+
import os
|
5 |
+
from datetime import datetime, timedelta
|
6 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
7 |
|
8 |
+
class GigaChat:
|
9 |
+
def __init__(self, auth_file='auth_token.json'):
|
10 |
+
# url = "https://ngw.devices.sberbank.ru:9443/api/v2/oauth"
|
11 |
+
self.auth_url = "https://api.mlrnd.ru/api/v2/oauth"
|
12 |
+
|
13 |
+
# url = "https://gigachat.devices.sberbank.ru/api/v1/chat/completions"
|
14 |
+
self.gen_url = "https://api.mlrnd.ru/api/v1/chat/completions"
|
15 |
+
|
16 |
+
# payload='scope=GIGACHAT_API_CORP'
|
17 |
+
self.payload='scope=API_v1'
|
18 |
+
|
19 |
+
self.auth_file = None
|
20 |
+
|
21 |
+
if self.auth_file is None or not os.path.isfile(auth_file):
|
22 |
+
self.gen_giga_token(auth_file)
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
def get_giga(cls, auth_file='auth_token.json'):
|
26 |
+
return cls(auth_file)
|
27 |
+
|
28 |
+
def gen_giga_token(self, auth_file):
|
29 |
+
headers = {
|
30 |
+
'Content-Type': 'application/x-www-form-urlencoded',
|
31 |
+
'Accept': 'application/json',
|
32 |
+
'RqUID': '1b519047-0ee9-4b63-8599-e5ffc9c77e72',
|
33 |
+
'Authorization': os.getenv('GIGACHAT_API_TOKEN')
|
34 |
+
}
|
35 |
+
|
36 |
+
response = requests.request(
|
37 |
+
"POST",
|
38 |
+
self.auth_url,
|
39 |
+
headers=headers,
|
40 |
+
data=self.payload,
|
41 |
+
verify=False
|
42 |
+
)
|
43 |
+
|
44 |
+
with open(auth_file, 'w') as f:
|
45 |
+
json.dump(json.loads(response.text), f, ensure_ascii=False)
|
46 |
+
|
47 |
+
|
48 |
+
def get_text(self, content, auth_token=None, params=None):
|
49 |
+
if params is None:
|
50 |
+
params = dict()
|
51 |
+
|
52 |
+
payload = json.dumps(
|
53 |
+
{
|
54 |
+
"model": "Test_model",
|
55 |
+
"messages": content,
|
56 |
+
"temperature": params.get("temperature") if params.get("temperature") else 1,
|
57 |
+
"top_p": params.get("top_p") if params.get("top_p") else 0.9,
|
58 |
+
"n": params.get("n") if params.get("n") else 1,
|
59 |
+
"stream": False,
|
60 |
+
"max_tokens": params.get("max_tokens") if params.get("max_tokens") else 512,
|
61 |
+
"repetition_penalty": params.get("repetition_penalty") if params.get("repetition_penalty") else 1
|
62 |
+
}
|
63 |
+
)
|
64 |
+
headers = {
|
65 |
+
'Content-Type': 'application/json',
|
66 |
+
'Accept': 'application/json',
|
67 |
+
'Authorization': f'Bearer {auth_token}'
|
68 |
+
}
|
69 |
+
|
70 |
+
response = requests.request("POST", self.gen_url, headers=headers, data=payload, verify=False)
|
71 |
+
|
72 |
+
return json.loads(response.text)
|
73 |
+
|
74 |
+
|
75 |
def get_tinyllama():
|
76 |
tinyllama = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.float16, device_map="auto")
|
77 |
return tinyllama
|
|
|
88 |
|
89 |
def response_tinyllama(
|
90 |
model=None,
|
91 |
+
messages=None,
|
92 |
+
params=None
|
93 |
):
|
94 |
|
95 |
+
if params is None:
|
96 |
+
params = dict()
|
97 |
+
|
98 |
messages_dict = [
|
99 |
{
|
100 |
"role": "system",
|
|
|
107 |
messages_dict.append({'role': 'assistant', 'content': step[1]})
|
108 |
|
109 |
prompt = model.tokenizer.apply_chat_template(messages_dict, tokenize=False, add_generation_prompt=True)
|
110 |
+
outputs = model(
|
111 |
+
prompt,
|
112 |
+
max_new_tokens = params.get("max_tokens") if params.get("max_tokens") else 512,
|
113 |
+
temperature = params.get("temperature") if params.get("temperature") else 1,
|
114 |
+
top_p = params.get("top_p") if params.get("top_p") else 0.9,
|
115 |
+
repetition_penalty = params.get("repetition_penalty") if params.get("repetition_penalty") else 1
|
116 |
+
)
|
117 |
|
118 |
return outputs[0]['generated_text'].split('<|assistant|>')[1].strip()
|
119 |
|
120 |
def response_qwen2ins1b(
|
121 |
model=None,
|
122 |
+
messages=None,
|
123 |
+
params=None
|
124 |
):
|
125 |
|
126 |
messages_dict = [
|
|
|
143 |
|
144 |
generated_ids = model['model'].generate(
|
145 |
model_inputs.input_ids,
|
146 |
+
max_new_tokens = params.get("max_tokens") if params.get("max_tokens") else 512,
|
147 |
+
temperature = params.get("temperature") if params.get("temperature") else 1,
|
148 |
+
top_p = params.get("top_p") if params.get("top_p") else 0.9,
|
149 |
+
repetition_penalty = params.get("repetition_penalty") if params.get("repetition_penalty") else 1
|
150 |
)
|
151 |
generated_ids = [
|
152 |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
|
|
154 |
|
155 |
response = model['tokenizer'].batch_decode(generated_ids, skip_special_tokens=True)[0]
|
156 |
|
157 |
+
return response # outputs[0]['generated_text'] #.split('<|assistant|>')[1].strip()
|
158 |
+
|
159 |
+
def response_gigachat(
|
160 |
+
model=None,
|
161 |
+
messages=None,
|
162 |
+
model_params=None
|
163 |
+
): # content=None, auth_file=None
|
164 |
+
|
165 |
+
with open(model.auth_file) as f:
|
166 |
+
auth_token = json.load(f)
|
167 |
+
|
168 |
+
if datetime.fromtimestamp(auth_token['expires_at']/1000) <= datetime.now() - timedelta(seconds=60):
|
169 |
+
model.gen_giga_token(model.auth_file)
|
170 |
+
with open(model.auth_file) as f:
|
171 |
+
auth_token = json.load(f)
|
172 |
+
|
173 |
+
content = []
|
174 |
+
for step in messages:
|
175 |
+
content.append({'role': 'user', 'content': step[0]})
|
176 |
+
if len(step) >= 2:
|
177 |
+
content.append({'role': 'assistant', 'content': step[1]})
|
178 |
+
|
179 |
+
resp = model.get_text(content, auth_token['access_token'], model_params)
|
180 |
+
|
181 |
+
return resp["choices"][0]["message"]["content"]
|
utils.py
CHANGED
@@ -1,76 +1,50 @@
|
|
1 |
import requests
|
2 |
import json
|
3 |
import os
|
4 |
-
from datetime import datetime, timedelta
|
5 |
import boto3
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
def get_text(content, auth_token=None):
|
28 |
-
# url = "https://gigachat.devices.sberbank.ru/api/v1/chat/completions"
|
29 |
-
url = "https://api.mlrnd.ru/api/v1/chat/completions"
|
30 |
-
|
31 |
-
payload = json.dumps({
|
32 |
-
"model": "Test_model",
|
33 |
-
"messages": content,
|
34 |
-
"temperature": 1,
|
35 |
-
"top_p": 0.1,
|
36 |
-
"n": 1,
|
37 |
-
"stream": False,
|
38 |
-
"max_tokens": 512,
|
39 |
-
"repetition_penalty": 1
|
40 |
-
})
|
41 |
-
headers = {
|
42 |
-
'Content-Type': 'application/json',
|
43 |
-
'Accept': 'application/json',
|
44 |
-
'Authorization': f'Bearer {auth_token}'
|
45 |
-
}
|
46 |
-
|
47 |
-
response = requests.request("POST", url, headers=headers, data=payload, verify=False)
|
48 |
-
|
49 |
-
return json.loads(response.text)
|
50 |
-
|
51 |
-
|
52 |
-
def generate(content=None, auth_file=None):
|
53 |
-
if auth_file is None or not os.path.isfile(auth_file):
|
54 |
-
gen_auth_token(auth_file)
|
55 |
-
|
56 |
-
with open(auth_file) as f:
|
57 |
-
auth_token = json.load(f)
|
58 |
-
|
59 |
-
if datetime.fromtimestamp(auth_token['expires_at']/1000) <= datetime.now() - timedelta(seconds=60):
|
60 |
-
gen_auth_token(auth_file)
|
61 |
-
with open(auth_file) as f:
|
62 |
-
auth_token = json.load(f)
|
63 |
-
|
64 |
-
content_giga = []
|
65 |
-
for step in content:
|
66 |
-
content_giga.append({'role': 'user', 'content': step[0]})
|
67 |
-
if len(step) >= 2:
|
68 |
-
content_giga.append({'role': 'assistant', 'content': step[1]})
|
69 |
-
|
70 |
-
resp = get_text(content_giga, auth_token['access_token'])
|
71 |
-
|
72 |
-
return resp["choices"][0]["message"]["content"]
|
73 |
|
74 |
def send_to_s3(data, name, session):
|
75 |
session.put_object(Bucket=os.getenv('S3_BUCKET'), Key=name, Body=json.dumps(data))
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import requests
|
2 |
import json
|
3 |
import os
|
|
|
4 |
import boto3
|
5 |
+
from datetime import datetime
|
6 |
+
from copy import copy
|
7 |
+
|
8 |
+
def clear_chat():
|
9 |
+
return '', []
|
10 |
+
|
11 |
+
def model_response(
|
12 |
+
content,
|
13 |
+
chat_history,
|
14 |
+
s3_session,
|
15 |
+
initialized_models,
|
16 |
+
gen_lib,
|
17 |
+
model_name,
|
18 |
+
model_params
|
19 |
+
):
|
20 |
+
chat_history.append([content])
|
21 |
+
res = gen_lib[model_name](initialized_models[model_name], chat_history, model_params)
|
22 |
+
chat_history[-1].append(res)
|
23 |
+
send_to_s3(res, f'protobench/{model_name}_{str(datetime.now()).replace(" ", "_")}.json', s3_session)
|
24 |
+
return '', chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
def send_to_s3(data, name, session):
|
27 |
session.put_object(Bucket=os.getenv('S3_BUCKET'), Key=name, Body=json.dumps(data))
|
28 |
|
29 |
+
# def giga_gen(content, chat_history, model, s3_session):
|
30 |
+
# chat_history.append([content])
|
31 |
+
# res = response_gigachat(chat_history,'auth_token.json')
|
32 |
+
# chat_history[-1].append(res)
|
33 |
+
# send_to_s3(res, f'protobench/giga_{str(datetime.now()).replace(" ", "_")}.json', s3_session)
|
34 |
+
# return '', chat_history
|
35 |
+
|
36 |
+
# def tiny_gen(content, chat_history, model, s3_session):
|
37 |
+
# chat_history.append([content])
|
38 |
+
# res = response_tinyllama(model, chat_history)
|
39 |
+
# chat_history[-1].append(res)
|
40 |
+
# send_to_s3(res, f'protobench/tiny_{str(datetime.now()).replace(" ", "_")}.json', s3_session)
|
41 |
+
# return '', chat_history
|
42 |
+
|
43 |
+
# def qwen_gen(content, chat_history, model, s3_session):
|
44 |
+
# chat_history.append([content])
|
45 |
+
# res = response_qwen2ins1b(model, chat_history)
|
46 |
+
# chat_history[-1].append(res)
|
47 |
+
# send_to_s3(res, f'protobench/qwen_{str(datetime.now()).replace(" ", "_")}.json', s3_session)
|
48 |
+
# return '', chat_history
|
49 |
+
|
50 |
+
|