File size: 4,387 Bytes
7f46a81
 
d40cd4a
 
7f46a81
d4d8ea9
 
7f46a81
d4d8ea9
f26592e
7f46a81
d4d8ea9
7873f3c
d4d8ea9
 
 
7f46a81
 
d40cd4a
d4d8ea9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7873f3c
d4d8ea9
 
 
7873f3c
 
d4d8ea9
 
 
 
 
 
7f46a81
229097c
d40cd4a
 
 
 
 
d4d8ea9
 
 
 
 
 
 
 
d40cd4a
 
 
 
7873f3c
d40cd4a
d4d8ea9
 
 
 
 
7873f3c
d4d8ea9
 
d40cd4a
7f46a81
 
d4d8ea9
 
7f46a81
 
 
7ff5239
d4d8ea9
 
39e2176
d4d8ea9
39e2176
d40cd4a
7f46a81
7873f3c
7f46a81
d4d8ea9
 
 
 
 
7873f3c
d4d8ea9
 
d40cd4a
 
 
d4d8ea9
 
 
d40cd4a
 
 
d4d8ea9
d40cd4a
d4d8ea9
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import requests
import json


class VectaraQuery():
    def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None):
        self.corpus_keys = corpus_keys
        self.api_key = api_key
        self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-24-05-sml"
        self.conv_id = None

    
    def get_body(self, query_str: str, response_lang: str, stream: False):
        corpora_list = [{
                'corpus_key': corpus_key, 'lexical_interpolation': 0.005
            } for corpus_key in self.corpus_keys
        ]

        return {
            'query': query_str,
            'search':
            {
                'corpora': corpora_list,
                'offset': 0,
                'limit': 50,
                'context_configuration':
                {
                    'sentences_before': 2,
                    'sentences_after': 2,
                    'start_tag': "%START_SNIPPET%",
                    'end_tag': "%END_SNIPPET%",
                },
                'reranker':
                {
                    'type': 'customer_reranker',
		        'reranker_id': 'rnk_272725719'
                },
            },
            'generation':
            {
                'prompt_name': self.prompt_name,
                'max_used_search_results': 10,
                'response_language': response_lang,
                'citations':
                {
                    'style': 'none'
                },
                'enable_factual_consistency_score': False
            },
            'chat':
            {
                'store': True
            },
            'stream_response': stream
        }
    

    def get_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "application/json",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }
    
    def get_stream_headers(self):
        return {
            "Content-Type": "application/json",
            "Accept": "text/event-stream",
            "x-api-key": self.api_key,
            "grpc-timeout": "60S"
        }

    def submit_query(self, query_str: str, language: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, language, stream=False)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())

        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            if response.status_code == 429:
                return "Sorry, Vectara chat turns exceeds plan limit."
            return "Sorry, something went wrong in my brain. Please try again later."

        res = response.json()

        if self.conv_id is None:
            self.conv_id = res['chat_id']

        summary = res['answer']
        
        return summary

    def submit_query_streaming(self, query_str: str, language: str):

        if self.conv_id:
            endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
        else:
            endpoint = "https://api.vectara.io/v2/chats"

        body = self.get_body(query_str, language, stream=True)

        response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True) 

        if response.status_code != 200:
            print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
            if response.status_code == 429:
                return "Sorry, Vectara chat turns exceeds plan limit."
            return "Sorry, something went wrong in my brain. Please try again later."        

        chunks = []
        for line in response.iter_lines():
            line = line.decode('utf-8')
            if line:  # filter out keep-alive new lines
                key, value = line.split(':', 1)
                if key == 'data':
                    line = json.loads(value)
                    if line['type'] == 'generation_chunk':
                        chunk = line['generation_chunk']
                        chunks.append(chunk)
                        yield chunk

        return ''.join(chunks)