Spaces:
Running
Running
github-actions
commited on
Commit
•
d4d8ea9
1
Parent(s):
4e6f87a
Sync updates from source repository
Browse files
app.py
CHANGED
@@ -7,8 +7,8 @@ from streamlit_pills import pills
|
|
7 |
|
8 |
from PIL import Image
|
9 |
|
10 |
-
max_examples =
|
11 |
-
|
12 |
def isTrue(x) -> bool:
|
13 |
if isinstance(x, bool):
|
14 |
return x
|
@@ -22,7 +22,7 @@ def launch_bot():
|
|
22 |
def generate_streaming_response(question):
|
23 |
response = vq.submit_query_streaming(question)
|
24 |
return response
|
25 |
-
|
26 |
def show_example_questions():
|
27 |
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
|
28 |
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
|
@@ -31,27 +31,25 @@ def launch_bot():
|
|
31 |
st.session_state.first_turn = False
|
32 |
return True
|
33 |
return False
|
34 |
-
|
35 |
if 'cfg' not in st.session_state:
|
36 |
-
|
37 |
cfg = OmegaConf.create({
|
38 |
-
'
|
39 |
-
'corpus_ids': corpus_ids,
|
40 |
'api_key': str(os.environ['api_key']),
|
41 |
'title': os.environ['title'],
|
42 |
-
'description': os.environ['description'],
|
43 |
'source_data_desc': os.environ['source_data_desc'],
|
44 |
'streaming': isTrue(os.environ.get('streaming', False)),
|
45 |
'prompt_name': os.environ.get('prompt_name', None),
|
46 |
-
'examples': os.environ.get('examples',
|
47 |
})
|
48 |
st.session_state.cfg = cfg
|
49 |
st.session_state.ex_prompt = None
|
50 |
st.session_state.first_turn = True
|
51 |
example_messages = [example.strip() for example in cfg.examples.split(",")]
|
52 |
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
|
53 |
-
|
54 |
-
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.
|
55 |
|
56 |
cfg = st.session_state.cfg
|
57 |
vq = st.session_state.vq
|
@@ -60,7 +58,8 @@ def launch_bot():
|
|
60 |
# left side content
|
61 |
with st.sidebar:
|
62 |
image = Image.open('Vectara-logo.png')
|
63 |
-
st.
|
|
|
64 |
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
|
65 |
|
66 |
st.markdown("---")
|
@@ -71,25 +70,23 @@ def launch_bot():
|
|
71 |
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
|
72 |
)
|
73 |
st.markdown("---")
|
74 |
-
|
75 |
|
76 |
-
st.markdown(f"<center> <h2> Vectara
|
77 |
-
st.markdown(f"<center> <h4> {cfg.description} <h4> </center>", unsafe_allow_html=True)
|
78 |
|
79 |
if "messages" not in st.session_state.keys():
|
80 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
example_container = st.empty()
|
84 |
with example_container:
|
85 |
if show_example_questions():
|
86 |
example_container.empty()
|
87 |
st.rerun()
|
88 |
-
|
89 |
-
# Display chat messages
|
90 |
-
for message in st.session_state.messages:
|
91 |
-
with st.chat_message(message["role"]):
|
92 |
-
st.write(message["content"])
|
93 |
|
94 |
# select prompt from example question or user provided input
|
95 |
if st.session_state.ex_prompt:
|
@@ -117,4 +114,4 @@ def launch_bot():
|
|
117 |
st.rerun()
|
118 |
|
119 |
if __name__ == "__main__":
|
120 |
-
launch_bot()
|
|
|
7 |
|
8 |
from PIL import Image
|
9 |
|
10 |
+
max_examples = 6
|
11 |
+
|
12 |
def isTrue(x) -> bool:
|
13 |
if isinstance(x, bool):
|
14 |
return x
|
|
|
22 |
def generate_streaming_response(question):
|
23 |
response = vq.submit_query_streaming(question)
|
24 |
return response
|
25 |
+
|
26 |
def show_example_questions():
|
27 |
if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:
|
28 |
selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
|
|
|
31 |
st.session_state.first_turn = False
|
32 |
return True
|
33 |
return False
|
34 |
+
|
35 |
if 'cfg' not in st.session_state:
|
36 |
+
corpus_keys = str(os.environ['corpus_keys']).split(',')
|
37 |
cfg = OmegaConf.create({
|
38 |
+
'corpus_keys': corpus_keys,
|
|
|
39 |
'api_key': str(os.environ['api_key']),
|
40 |
'title': os.environ['title'],
|
|
|
41 |
'source_data_desc': os.environ['source_data_desc'],
|
42 |
'streaming': isTrue(os.environ.get('streaming', False)),
|
43 |
'prompt_name': os.environ.get('prompt_name', None),
|
44 |
+
'examples': os.environ.get('examples', None)
|
45 |
})
|
46 |
st.session_state.cfg = cfg
|
47 |
st.session_state.ex_prompt = None
|
48 |
st.session_state.first_turn = True
|
49 |
example_messages = [example.strip() for example in cfg.examples.split(",")]
|
50 |
st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
|
51 |
+
|
52 |
+
st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)
|
53 |
|
54 |
cfg = st.session_state.cfg
|
55 |
vq = st.session_state.vq
|
|
|
58 |
# left side content
|
59 |
with st.sidebar:
|
60 |
image = Image.open('Vectara-logo.png')
|
61 |
+
st.image(image, width=175)
|
62 |
+
st.markdown(f"## About\n\n"
|
63 |
f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n\n")
|
64 |
|
65 |
st.markdown("---")
|
|
|
70 |
"This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
|
71 |
)
|
72 |
st.markdown("---")
|
73 |
+
|
74 |
|
75 |
+
st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)
|
|
|
76 |
|
77 |
if "messages" not in st.session_state.keys():
|
78 |
st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
|
79 |
+
|
80 |
+
# Display chat messages
|
81 |
+
for message in st.session_state.messages:
|
82 |
+
with st.chat_message(message["role"]):
|
83 |
+
st.write(message["content"])
|
84 |
|
85 |
example_container = st.empty()
|
86 |
with example_container:
|
87 |
if show_example_questions():
|
88 |
example_container.empty()
|
89 |
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# select prompt from example question or user provided input
|
92 |
if st.session_state.ex_prompt:
|
|
|
114 |
st.rerun()
|
115 |
|
116 |
if __name__ == "__main__":
|
117 |
+
launch_bot()
|
query.py
CHANGED
@@ -3,52 +3,54 @@ import json
|
|
3 |
|
4 |
|
5 |
class VectaraQuery():
|
6 |
-
def __init__(self, api_key: str,
|
7 |
-
self.
|
8 |
-
self.corpus_ids = corpus_ids
|
9 |
self.api_key = api_key
|
10 |
-
self.prompt_name = prompt_name if prompt_name else "vectara-
|
11 |
self.conv_id = None
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
17 |
]
|
18 |
|
19 |
return {
|
20 |
-
'query':
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
}
|
53 |
|
54 |
|
@@ -56,76 +58,71 @@ class VectaraQuery():
|
|
56 |
return {
|
57 |
"Content-Type": "application/json",
|
58 |
"Accept": "application/json",
|
59 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"x-api-key": self.api_key,
|
61 |
"grpc-timeout": "60S"
|
62 |
}
|
63 |
|
64 |
def submit_query(self, query_str: str):
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())
|
70 |
if response.status_code != 200:
|
71 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
|
|
|
|
72 |
return "Sorry, something went wrong in my brain. Please try again later."
|
73 |
|
74 |
res = response.json()
|
75 |
|
76 |
-
|
77 |
-
|
78 |
|
79 |
-
|
80 |
-
st_code = chat['status']
|
81 |
-
print(f"Chat query failed with code {st_code}")
|
82 |
-
if st_code == 'RESOURCE_EXHAUSTED':
|
83 |
-
self.conv_id = None
|
84 |
-
return 'Sorry, Vectara chat turns exceeds plan limit.'
|
85 |
-
return 'Sorry, something went wrong in my brain. Please try again later.'
|
86 |
|
87 |
-
self.conv_id = chat['conversationId'] if chat else None
|
88 |
return summary
|
89 |
|
90 |
def submit_query_streaming(self, query_str: str):
|
91 |
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers(), stream=True)
|
96 |
if response.status_code != 200:
|
97 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
98 |
-
|
|
|
|
|
99 |
|
100 |
chunks = []
|
101 |
for line in response.iter_lines():
|
|
|
102 |
if line: # filter out keep-alive new lines
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
chat = summary.get('chat', None)
|
113 |
-
if chat and chat.get('status', None):
|
114 |
-
st_code = chat['status']
|
115 |
-
print(f"Chat query failed with code {st_code}")
|
116 |
-
if st_code == 'RESOURCE_EXHAUSTED':
|
117 |
-
self.conv_id = None
|
118 |
-
return 'Sorry, Vectara chat turns exceeds plan limit.'
|
119 |
-
return 'Sorry, something went wrong in my brain. Please try again later.'
|
120 |
-
conv_id = chat.get('conversationId', None) if chat else None
|
121 |
-
if conv_id:
|
122 |
-
self.conv_id = conv_id
|
123 |
-
|
124 |
-
chunk = summary['text']
|
125 |
-
chunks.append(chunk)
|
126 |
-
yield chunk
|
127 |
-
|
128 |
-
if summary['done']:
|
129 |
-
break
|
130 |
-
|
131 |
-
return ''.join(chunks)
|
|
|
3 |
|
4 |
|
5 |
class VectaraQuery():
|
6 |
+
def __init__(self, api_key: str, corpus_keys: list[str], prompt_name: str = None):
|
7 |
+
self.corpus_keys = corpus_keys
|
|
|
8 |
self.api_key = api_key
|
9 |
+
self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-24-05-sml"
|
10 |
self.conv_id = None
|
11 |
|
12 |
+
|
13 |
+
def get_body(self, query_str: str, stream: False):
|
14 |
+
corpora_list = [{
|
15 |
+
'corpus_key': corpus_key, 'lexical_interpolation': 0.005
|
16 |
+
} for corpus_key in self.corpus_keys
|
17 |
]
|
18 |
|
19 |
return {
|
20 |
+
'query': query_str,
|
21 |
+
'search':
|
22 |
+
{
|
23 |
+
'corpora': corpora_list,
|
24 |
+
'offset': 0,
|
25 |
+
'limit': 50,
|
26 |
+
'context_configuration':
|
27 |
+
{
|
28 |
+
'sentences_before': 2,
|
29 |
+
'sentences_after': 2,
|
30 |
+
'start_tag': "%START_SNIPPET%",
|
31 |
+
'end_tag': "%END_SNIPPET%",
|
32 |
+
},
|
33 |
+
'reranker':
|
34 |
+
{
|
35 |
+
'type': 'customer_reranker',
|
36 |
+
'reranker_id': 'rnk_272725719'
|
37 |
+
},
|
38 |
+
},
|
39 |
+
'generation':
|
40 |
+
{
|
41 |
+
'prompt_name': self.prompt_name,
|
42 |
+
'max_used_search_results': 10,
|
43 |
+
'response_language': 'eng',
|
44 |
+
'citations':
|
45 |
+
{
|
46 |
+
'style': 'none'
|
47 |
+
}
|
48 |
+
},
|
49 |
+
'chat':
|
50 |
+
{
|
51 |
+
'store': True
|
52 |
+
},
|
53 |
+
'stream_response': stream
|
54 |
}
|
55 |
|
56 |
|
|
|
58 |
return {
|
59 |
"Content-Type": "application/json",
|
60 |
"Accept": "application/json",
|
61 |
+
"x-api-key": self.api_key,
|
62 |
+
"grpc-timeout": "60S"
|
63 |
+
}
|
64 |
+
|
65 |
+
def get_stream_headers(self):
|
66 |
+
return {
|
67 |
+
"Content-Type": "application/json",
|
68 |
+
"Accept": "text/event-stream",
|
69 |
"x-api-key": self.api_key,
|
70 |
"grpc-timeout": "60S"
|
71 |
}
|
72 |
|
73 |
def submit_query(self, query_str: str):
|
74 |
|
75 |
+
if self.conv_id:
|
76 |
+
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
|
77 |
+
else:
|
78 |
+
endpoint = "https://api.vectara.io/v2/chats"
|
79 |
+
|
80 |
+
body = self.get_body(query_str, stream=False)
|
81 |
+
|
82 |
+
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_headers())
|
83 |
|
|
|
84 |
if response.status_code != 200:
|
85 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
86 |
+
if response.status_code == 429:
|
87 |
+
return "Sorry, Vectara chat turns exceeds plan limit."
|
88 |
return "Sorry, something went wrong in my brain. Please try again later."
|
89 |
|
90 |
res = response.json()
|
91 |
|
92 |
+
if self.conv_id is None:
|
93 |
+
self.conv_id = res['chat_id']
|
94 |
|
95 |
+
summary = res['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
97 |
return summary
|
98 |
|
99 |
def submit_query_streaming(self, query_str: str):
|
100 |
|
101 |
+
if self.conv_id:
|
102 |
+
endpoint = f"https://api.vectara.io/v2/chats/{self.conv_id}/turns"
|
103 |
+
else:
|
104 |
+
endpoint = "https://api.vectara.io/v2/chats"
|
105 |
+
|
106 |
+
body = self.get_body(query_str, stream=True)
|
107 |
+
|
108 |
+
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=self.get_stream_headers(), stream=True)
|
109 |
|
|
|
110 |
if response.status_code != 200:
|
111 |
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
|
112 |
+
if response.status_code == 429:
|
113 |
+
return "Sorry, Vectara chat turns exceeds plan limit."
|
114 |
+
return "Sorry, something went wrong in my brain. Please try again later."
|
115 |
|
116 |
chunks = []
|
117 |
for line in response.iter_lines():
|
118 |
+
line = line.decode('utf-8')
|
119 |
if line: # filter out keep-alive new lines
|
120 |
+
key, value = line.split(':', 1)
|
121 |
+
if key == 'data':
|
122 |
+
line = json.loads(value)
|
123 |
+
if line['type'] == 'generation_chunk':
|
124 |
+
chunk = line['generation_chunk']
|
125 |
+
chunks.append(chunk)
|
126 |
+
yield chunk
|
127 |
+
|
128 |
+
return ''.join(chunks)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|