File size: 7,215 Bytes
7f46a81
 
 
28c58dc
7873f3c
7f46a81
 
d40fd1b
7873f3c
d40fd1b
28c58dc
 
7f46a81
d4d8ea9
28c58dc
7873f3c
 
 
 
 
 
 
 
 
 
 
d4d8ea9
486e4f5
 
29b122c
486e4f5
adf3dc3
7f46a81
28c58dc
 
 
 
 
 
d26ed68
7873f3c
7f46a81
486e4f5
 
7873f3c
486e4f5
d4d8ea9
d40fd1b
 
 
 
 
 
 
0b11bc0
d4d8ea9
0aa3b05
d4d8ea9
0aa3b05
d4d8ea9
0aa3b05
 
6975b52
486e4f5
1f16a4c
7873f3c
 
0aa3b05
 
fe4e974
7873f3c
 
0b11bc0
 
d4d8ea9
 
673067b
0aa3b05
 
7f46a81
 
 
 
 
d4d8ea9
 
7873f3c
 
 
 
 
28c58dc
7873f3c
7f46a81
28c58dc
 
 
 
 
 
 
7f46a81
 
 
 
 
347c81e
7f46a81
 
d4d8ea9
7f46a81
d4d8ea9
7f46a81
d26ed68
28c58dc
d4d8ea9
 
 
 
 
0b11bc0
 
 
 
 
 
7f46a81
0b11bc0
fe4e974
 
 
 
 
d26ed68
 
 
0b11bc0
 
d26ed68
 
 
486e4f5
28c58dc
 
486e4f5
 
 
 
28c58dc
 
486e4f5
 
7873f3c
 
28c58dc
 
 
 
 
 
0b11bc0
7873f3c
 
 
28c58dc
 
 
 
d26ed68
7f46a81
d4d8ea9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
from omegaconf import OmegaConf
from query import VectaraQuery
import os
from PIL import Image
import uuid

import streamlit as st
from streamlit_pills import pills
from streamlit_feedback import streamlit_feedback

from utils import thumbs_feedback, send_amplitude_data, escape_dollars_outside_latex


max_examples = 6
languages = {'English': 'eng', 'Spanish': 'spa', 'French': 'fra', 'Chinese': 'zho', 'German': 'deu', 'Hindi': 'hin', 'Arabic': 'ara',
             'Portuguese': 'por', 'Italian': 'ita', 'Japanese': 'jpn', 'Korean': 'kor', 'Russian': 'rus', 'Turkish': 'tur', 'Persian (Farsi)': 'fas',
             'Vietnamese': 'vie', 'Thai': 'tha', 'Hebrew': 'heb', 'Dutch': 'nld', 'Indonesian': 'ind', 'Polish': 'pol', 'Ukrainian': 'ukr',
             'Romanian': 'ron', 'Swedish': 'swe', 'Czech': 'ces', 'Greek': 'ell', 'Bengali': 'ben', 'Malay (or Malaysian)': 'msa', 'Urdu': 'urd'}

# Setup for HTTP API Calls to Amplitude Analytics
if 'device_id' not in st.session_state:
    st.session_state.device_id = str(uuid.uuid4())


if "feedback_key" not in st.session_state:
        st.session_state.feedback_key = 0

def isTrue(x) -> bool:
    if isinstance(x, bool):
        return x
    return x.strip().lower() == 'true'

def launch_bot():
    def reset():
        st.session_state.messages = [{"role": "assistant", "content": "How may I help you?"}]
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True


    def generate_response(question):
        response = vq.submit_query(question, languages[st.session_state.language])
        return response
    
    def generate_streaming_response(question):
        response = vq.submit_query_streaming(question, languages[st.session_state.language])
        return response
    
    def show_example_questions():        
        if len(st.session_state.example_messages) > 0 and st.session_state.first_turn:            
            selected_example = pills("Queries to Try:", st.session_state.example_messages, index=None)
            if selected_example:
                st.session_state.ex_prompt = selected_example
                st.session_state.first_turn = False
                return True
        return False

    if 'cfg' not in st.session_state:
        corpus_keys = str(os.environ['corpus_keys']).split(',')
        cfg = OmegaConf.create({
            'corpus_keys': corpus_keys,
            'api_key': str(os.environ['api_key']),
            'title': os.environ['title'],
            'source_data_desc': os.environ['source_data_desc'],
            'streaming': isTrue(os.environ.get('streaming', False)),
            'prompt_name': os.environ.get('prompt_name', None),
            'examples': os.environ.get('examples', None),
            'language': 'English'
        })
        st.session_state.cfg = cfg
        st.session_state.ex_prompt = None
        st.session_state.first_turn = True
        st.session_state.language = cfg.language
        example_messages = [example.strip() for example in cfg.examples.split(",")]
        st.session_state.example_messages = [em for em in example_messages if len(em)>0][:max_examples]
        
        st.session_state.vq = VectaraQuery(cfg.api_key, cfg.corpus_keys, cfg.prompt_name)

    cfg = st.session_state.cfg
    vq = st.session_state.vq
    st.set_page_config(page_title=cfg.title, layout="wide")

    # left side content
    with st.sidebar:
        image = Image.open('Vectara-logo.png')
        st.image(image, width=175)
        st.markdown(f"## About\n\n"
                    f"This demo uses Retrieval Augmented Generation to ask questions about {cfg.source_data_desc}\n")
        
        cfg.language = st.selectbox('Language:', languages.keys())
        if st.session_state.language != cfg.language:
            st.session_state.language = cfg.language
            reset()
            st.rerun()

        st.markdown("\n")
        bc1, _ = st.columns([1, 1])
        with bc1:
            if st.button('Start Over'):
                reset()
                st.rerun()

        st.markdown("---")
        st.markdown(
            "## How this works?\n"
            "This app was built with [Vectara](https://vectara.com).\n"
            "Vectara's [Indexing API](https://docs.vectara.com/docs/api-reference/indexing-apis/indexing) was used to ingest the data into a Vectara corpus (or index).\n\n"
            "This app uses Vectara [Chat API](https://docs.vectara.com/docs/console-ui/vectara-chat-overview) to query the corpus and present the results to you, answering your question.\n\n"
        )
        st.markdown("---")
        

    st.markdown(f"<center> <h2> Vectara AI Assistant: {cfg.title} </h2> </center>", unsafe_allow_html=True)

    if "messages" not in st.session_state.keys():
        reset()
                
    # Display chat messages
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.write(message["content"])

    example_container = st.empty()
    with example_container:
        if show_example_questions():
            example_container.empty()
            st.rerun()

    # select prompt from example question or user provided input
    if st.session_state.ex_prompt:
        prompt = st.session_state.ex_prompt
    else:
        prompt = st.chat_input()
    if prompt:
        st.session_state.messages.append({"role": "user", "content": prompt})
        with st.chat_message("user"):
            st.write(prompt)
        st.session_state.ex_prompt = None
        
    # Generate a new response if last message is not from assistant
    if st.session_state.messages[-1]["role"] != "assistant":
        with st.chat_message("assistant"):
            if cfg.streaming:
                stream = generate_streaming_response(prompt)
                response = st.write_stream(stream)
            else:
                with st.spinner("Thinking..."):
                    response = generate_response(prompt)
                    st.write(response)

            response = escape_dollars_outside_latex(response)
            message = {"role": "assistant", "content": response}
            st.session_state.messages.append(message)

            # Send query and response to Amplitude Analytics
            send_amplitude_data(
                user_query=st.session_state.messages[-2]["content"],
                chat_response=st.session_state.messages[-1]["content"],
                demo_name=cfg["title"],
                language=st.session_state.language
            )
            st.rerun()

    if (st.session_state.messages[-1]["role"] == "assistant") & (st.session_state.messages[-1]["content"] != "How may I help you?"):
        streamlit_feedback(feedback_type="thumbs", on_submit = thumbs_feedback, key = st.session_state.feedback_key,
                                      kwargs = {"user_query": st.session_state.messages[-2]["content"],
                                                "chat_response": st.session_state.messages[-1]["content"],
                                                "demo_name": cfg["title"],
                                                "response_language": st.session_state.language})
    
if __name__ == "__main__":
    launch_bot()