IRS-chat / query.py
ofermend's picture
Update query.py
a466baa verified
raw
history blame
5.06 kB
import requests
import json
import re
from urllib.parse import quote
def extract_between_tags(text, start_tag, end_tag):
start_index = text.find(start_tag)
end_index = text.find(end_tag, start_index)
return text[start_index+len(start_tag):end_index-len(end_tag)]
class VectaraQuery():
def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None):
self.customer_id = customer_id
self.corpus_ids = corpus_ids
self.api_key = api_key
self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-v1.2.0"
self.conv_id = None
def submit_query(self, query_str: str):
corpora_key_list = [{
'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
} for corpus_id in self.corpus_ids
]
endpoint = f"https://api.vectara.io/v1/query"
start_tag = "%START_SNIPPET%"
end_tag = "%END_SNIPPET%"
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"customer-id": self.customer_id,
"x-api-key": self.api_key,
"grpc-timeout": "60S"
}
body = {
'query': [
{
'query': query_str,
'start': 0,
'numResults': 50,
'corpusKey': corpora_key_list,
'context_config': {
'sentences_before': 2,
'sentences_after': 2,
'start_tag': start_tag,
'end_tag': end_tag,
},
'rerankingConfig':
{
'rerankerId': 272725718,
'mmrConfig': {
'diversityBias': 0.3
}
},
'summary': [
{
'responseLang': 'eng',
'maxSummarizedResults': 5,
'summarizerPromptName': self.prompt_name,
'chat': {
'store': True,
'conversationId': self.conv_id
},
# 'debug': True,
}
]
}
]
}
response = requests.post(endpoint, data=json.dumps(body), verify=True, headers=headers)
if response.status_code != 200:
print(f"Query failed with code {response.status_code}, reason {response.reason}, text {response.text}")
return "Sorry, something went wrong in my brain. Please try again later."
res = response.json()
top_k = 10
summary = res['responseSet'][0]['summary'][0]['text']
responses = res['responseSet'][0]['response'][:top_k]
docs = res['responseSet'][0]['document']
chat = res['responseSet'][0]['summary'][0]['chat']
if chat['status'] != None:
st_code = chat['status']
print(f"Chat query failed with code {st_code}")
if st_code == 'RESOURCE_EXHAUSTED':
self.conv_id = None
return 'Sorry, Vectara chat turns exceeds plan limit.'
return 'Sorry, something went wrong in my brain. Please try again later.'
self.conv_id = res['responseSet'][0]['summary'][0]['chat']['conversationId']
pattern = r'\[\d{1,2}\]'
matches = [match.span() for match in re.finditer(pattern, summary)]
# figure out unique list of references
refs = []
for match in matches:
start, end = match
response_num = int(summary[start+1:end-1])
doc_num = responses[response_num-1]['documentIndex']
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
if 'url' in metadata.keys():
url = f"{metadata['url']}#:~:text={quote(text)}"
if url not in refs:
refs.append(url)
# replace references with markdown links
refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
for match in reversed(matches):
start, end = match
response_num = int(summary[start+1:end-1])
doc_num = responses[response_num-1]['documentIndex']
metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
url = f"{metadata['url']}#:~:text={quote(text)}"
citation_inx = refs_dict[url]
summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
return summary