ofermend commited on
Commit
a466baa
·
verified ·
1 Parent(s): 2c7091c

Update query.py

Browse files
Files changed (1) hide show
  1. query.py +11 -8
query.py CHANGED
@@ -9,15 +9,16 @@ def extract_between_tags(text, start_tag, end_tag):
9
  return text[start_index+len(start_tag):end_index-len(end_tag)]
10
 
11
  class VectaraQuery():
12
- def __init__(self, api_key: str, customer_id: int, corpus_ids: list):
13
  self.customer_id = customer_id
14
  self.corpus_ids = corpus_ids
15
  self.api_key = api_key
 
16
  self.conv_id = None
17
 
18
  def submit_query(self, query_str: str):
19
  corpora_key_list = [{
20
- 'customer_id': str(self.customer_id), 'corpus_id': str(corpus_id), 'lexical_interpolation_config': {'lambda': 0.025}
21
  } for corpus_id in self.corpus_ids
22
  ]
23
 
@@ -27,7 +28,7 @@ class VectaraQuery():
27
  headers = {
28
  "Content-Type": "application/json",
29
  "Accept": "application/json",
30
- "customer-id": str(self.customer_id),
31
  "x-api-key": self.api_key,
32
  "grpc-timeout": "60S"
33
  }
@@ -55,12 +56,12 @@ class VectaraQuery():
55
  {
56
  'responseLang': 'eng',
57
  'maxSummarizedResults': 5,
58
- 'summarizerPromptName': 'vectara-experimental-summary-ext-2023-12-11-large', # Note: this promptName requires Vectara Scale plan
59
  'chat': {
60
  'store': True,
61
  'conversationId': self.conv_id
62
  },
63
- 'debug': True,
64
  }
65
  ]
66
  }
@@ -101,9 +102,10 @@ class VectaraQuery():
101
  doc_num = responses[response_num-1]['documentIndex']
102
  metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
103
  text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
104
- url = f"{metadata['url']}#:~:text={quote(text)}"
105
- if url not in refs:
106
- refs.append(url)
 
107
 
108
  # replace references with markdown links
109
  refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
@@ -118,3 +120,4 @@ class VectaraQuery():
118
  summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
119
 
120
  return summary
 
 
9
  return text[start_index+len(start_tag):end_index-len(end_tag)]
10
 
11
  class VectaraQuery():
12
+ def __init__(self, api_key: str, customer_id: str, corpus_ids: list[str], prompt_name: str = None):
13
  self.customer_id = customer_id
14
  self.corpus_ids = corpus_ids
15
  self.api_key = api_key
16
+ self.prompt_name = prompt_name if prompt_name else "vectara-summary-ext-v1.2.0"
17
  self.conv_id = None
18
 
19
  def submit_query(self, query_str: str):
20
  corpora_key_list = [{
21
+ 'customer_id': self.customer_id, 'corpus_id': corpus_id, 'lexical_interpolation_config': {'lambda': 0.025}
22
  } for corpus_id in self.corpus_ids
23
  ]
24
 
 
28
  headers = {
29
  "Content-Type": "application/json",
30
  "Accept": "application/json",
31
+ "customer-id": self.customer_id,
32
  "x-api-key": self.api_key,
33
  "grpc-timeout": "60S"
34
  }
 
56
  {
57
  'responseLang': 'eng',
58
  'maxSummarizedResults': 5,
59
+ 'summarizerPromptName': self.prompt_name,
60
  'chat': {
61
  'store': True,
62
  'conversationId': self.conv_id
63
  },
64
+ # 'debug': True,
65
  }
66
  ]
67
  }
 
102
  doc_num = responses[response_num-1]['documentIndex']
103
  metadata = {item['name']: item['value'] for item in docs[doc_num]['metadata']}
104
  text = extract_between_tags(responses[response_num-1]['text'], start_tag, end_tag)
105
+ if 'url' in metadata.keys():
106
+ url = f"{metadata['url']}#:~:text={quote(text)}"
107
+ if url not in refs:
108
+ refs.append(url)
109
 
110
  # replace references with markdown links
111
  refs_dict = {url:(inx+1) for inx,url in enumerate(refs)}
 
120
  summary = summary[:start] + f'[\[{citation_inx}\]]({url})' + summary[end:]
121
 
122
  return summary
123
+